Journal of Low Temperature Physics

, Volume 188, Issue 1–2, pp 22–38 | Cite as

Excited Rotational States in Doped \({^{4}}\)He Clusters: a Diffusion Monte Carlo Analysis

Article

Abstract

We report an extension of diffusion Monte Carlo (DMC) to the calculation of the molecular rotational energies by means of the generalized, symmetry-adapted, imaginary-time correlation functions (SAITCFs) originally introduced in the reptation quantum Monte Carlo (RQMC) framework (Škrbić in J Phys Chem A 111:12749, 2007). We studied the a-type and b-type rotational lines of the CO(\(^{4}\)He)\(_{N}\) clusters with \(N=\)1–8 that correlate, in the dimer limit, with the end-over-end and free-rotor transitions. We compare the SAITCF–DMC results with accurate DVR (for the dimer case), RQMC and other DMC data, and with reference experimental findings (Surin in Phys Rev Lett 101:233401, 2008). A good agreement is generally found, but a systematic underestimation of the SAITCF–DMC rotational energies of the b-type series is observed. Sources of inaccuracy in our theoretical approach and in the computational protocol are discussed and analyzed in detail.

Keywords

Stochastic simulations Free rotor Autocorrelation function 

Notes

Acknowledgements

The author acknowledges E. Bodo, F. Marinetti and F.A. Gianturco for useful discussions, and the CINECA computing center for the computational support.

References

  1. 1.
    J.P. Toennies, A. Vilesov, Annu. Rev. Phys. Chem. 49, 1 (1998)ADSCrossRefGoogle Scholar
  2. 2.
    Y. Kwon, P. Huang, M.V. Patel, D. Blume, K.B. Whaley, J. Chem. Phys. 113, 6469 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    J.P. Toennies, A.F. Vilesov, K.B. Whaley, Phys. Today 54, 31 (2001)CrossRefGoogle Scholar
  4. 4.
    J.A. Northby, J. Chem. Phys. 115, 10065 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    C. Callegari, K.K. Lehmann, R. Schmied, G. Scoles, J. Chem. Phys. 115, 10090 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    J.P. Toennies, A.F. Vilesov, Angew. Chem. Int. Ed. 43, 2622 (2004)CrossRefGoogle Scholar
  7. 7.
    F. Stienkemeier, K.K. Lehmann, J. Phys. B 39, R127 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    M. Barranco, R. Guardiola, S. Hernandez, R. Mayol, J. Navarro, M. Pi, J. Low. Temp. Phys. 142, 1 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    S. Goyal, D.L. Schutt, G. Scoles, Phys. Rev. Lett. 69, 933 (1992)ADSCrossRefGoogle Scholar
  10. 10.
    R. Fröchtenicht, J.P. Toennies, A. Vilesov, Chem. Phys. Lett. 229, 1 (1994)ADSCrossRefGoogle Scholar
  11. 11.
    M. Hartmann, R.E. Miller, J.P. Toennies, A. Vilesov, Phys. Rev. Lett. 75, 1566 (1995)ADSCrossRefGoogle Scholar
  12. 12.
    S. Grebenev, J.P. Toennies, A.F. Vilesov, Science 279, 2083 (1998)ADSCrossRefGoogle Scholar
  13. 13.
    J. Tang, Y. Xu, A.R. McKellar, W. Jäger, Science 297, 2030 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    S. Grebenev, M. Hartmann, M. Havenith, B. Sartakov, J.P. Toennies, A.F. Vilesov, J. Chem. Phys. 112, 4485 (2000)ADSCrossRefGoogle Scholar
  15. 15.
    D.M. Ceperley, Rev. Mod. Phys. 67, 279 (1995)ADSCrossRefGoogle Scholar
  16. 16.
    C. Callegari, A. Conjusteau, I. Reinhard, K.K. Lehmann, G. Scoles, F. Dalfovo, Phys. Rev. Lett. 83, 5058 (1999)ADSCrossRefGoogle Scholar
  17. 17.
    S. Moroni, A. Sarsa, S. Fantoni, K.E. Schimdt, S. Baroni, Phys. Rev. Lett. 90, 143401 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    P. Huang, K.B. Whaley, J. Chem. Phys. 117, 11244 (2002)ADSCrossRefGoogle Scholar
  19. 19.
    Y. Kwon, K.B. Whaley, Phys. Rev. Lett. 89, 273401 (2002)ADSCrossRefGoogle Scholar
  20. 20.
    J. Tang, A.R. McKellar, J. Chem. Phys. 121, 181 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    Y. Xu, W.J.J. Tang, A.R. McKellar, Phys. Rev. Lett. 91, 163401 (2003)ADSCrossRefGoogle Scholar
  22. 22.
    A. Conjusteau, C. Callegari, I. Reinhard, K.K. Lehmann, G. Scoles, J. Chem. Phys. 113, 4840 (2000)ADSCrossRefGoogle Scholar
  23. 23.
    S. Baroni, S. Moroni, Phys. Rev. Lett. 82, 4745 (1999)ADSCrossRefGoogle Scholar
  24. 24.
    S. Moroni, N. Blinov, P.N. Roy, J. Chem. Phys. 121, 4577 (2004)CrossRefGoogle Scholar
  25. 25.
    S. Paolini, S. Fantoni, S. Moroni, S. Baroni, J. Chem. Phys. 123, 114306 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    T. Skrbic, S. Moroni, S. Baroni, J. Phys. Chem. A 111, 12749 (2007)CrossRefGoogle Scholar
  27. 27.
    T. Skrbic, S. Moroni, S. Baroni, J. Phys. Chem. A 111, 7640 (2007)CrossRefGoogle Scholar
  28. 28.
    J. Tang, A.R. McKellar, J. Chem. Phys. 119, 754 (2003)ADSCrossRefGoogle Scholar
  29. 29.
    A.R. McKellar, J. Chem. Phys. 121, 6868 (2004)ADSCrossRefGoogle Scholar
  30. 30.
    A.R. McKellar, J. Chem. Phys. 125, 164328 (2006)ADSCrossRefGoogle Scholar
  31. 31.
    L.A. Surin, A.V. Potapov, B.S. Dumesh, S. Schlemmer, Y. Xu, P.L. Ratson, W. Jäger, Phys. Rev. Lett. 101, 233401 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    P.L. Raston, Y. Xu, W. Jäger, A.V. Potapov, L.A. Surin, B.S. Dumesh, S. Schlemmer, Phys. Chem. Chem. Phys. 12, 8260 (2010)CrossRefGoogle Scholar
  33. 33.
    J.A. Ramilowski, D. Farrelly, Phys. Chem. Chem. Phys. 14, 8123 (2012)CrossRefGoogle Scholar
  34. 34.
    E. Bodo, E. Coccia, D. Lopez-Duran, F.A. Gianturco, Phys. Scripta 76, C104 (2007)ADSCrossRefGoogle Scholar
  35. 35.
    D. Bressanini, G. Morosi, M. Mella, J. Chem. Phys. 116, 5345 (2002)ADSCrossRefGoogle Scholar
  36. 36.
    P.J. Reynolds, D.M. Ceperley, B.J. Alder, W.A. Lester Jr., J. Chem. Phys. 77, 5593 (1982)ADSCrossRefGoogle Scholar
  37. 37.
    F. Marinetti, E. Coccia, E. Bodo, F.A. Gianturco, E. Yurtsever, M. Yurtsever, E. Yildirim, Theor. Chem. Acc. 118, 53 (2007)CrossRefGoogle Scholar
  38. 38.
    E. Coccia, F. Marinetti, E. Bodo, F. Gianturco, E. Yurtsever, M. Yurtsever, E. Yildirim, J. Chem. Phys. 126, 124319 (2007)ADSCrossRefGoogle Scholar
  39. 39.
    F. Marinetti, L.U. Pina, E. Coccia, D.L. Duran, E. Bodo, F.A. Gianturco, J. Phys. Chem. A 111, 12289 (2007)CrossRefGoogle Scholar
  40. 40.
    E. Coccia, E. Bodo, F.A. Gianturco, EuroPhys. Lett. 82, 23001 (2008)ADSCrossRefGoogle Scholar
  41. 41.
    E. Coccia, E. Bodo, F. Marinetti, F.A. Gianturco, E. Yurtsever, M. Yurtsever, Latest Advances in Atomic Cluster Collisions (Imperial College Press, London, 2008)Google Scholar
  42. 42.
    E. Coccia, E. Bodo, F. Marinetti, F.A. Gianturco, Chem. Phys. Chem. 9, 1323 (2008)CrossRefGoogle Scholar
  43. 43.
    E. Coccia, F. Marinetti, E. Bodo, F.A. Gianturco, J. Chem. Phys. 128, 134511 (2008)ADSCrossRefGoogle Scholar
  44. 44.
    E. Coccia, E. Bodo, F.A. Gianturco, J. Chem. Phys. 130, 094906 (2009)ADSCrossRefGoogle Scholar
  45. 45.
    S. Bovino, E. Coccia, E. Bodo, D. Lopez-Duran, F.A. Gianturco, J. Chem. Phys. 130, 224903 (2009)ADSCrossRefGoogle Scholar
  46. 46.
    R. Prosmiti, G. Delgado-Barrio, P. Villarreal, E. Yurtsever, E. Coccia, F.A. Gianturco, J. Phys. Chem. A 113, 14718 (2009)CrossRefGoogle Scholar
  47. 47.
    E. Coccia, F.A. Gianturco, J. Phys. Chem. A 114, 3221 (2010)CrossRefGoogle Scholar
  48. 48.
    S. Orlandini, E. Coccia, I. Baccarelli, F.A. Gianturco, E. Garrido, T. Gonzalez-Lezana, G. Delgado-Barrio, P. Villarreal, Mol. Phys. 108, 57 (2010)ADSCrossRefGoogle Scholar
  49. 49.
    D. Blume, M. Mladenovic, M. Lewerenz, K.B. Whaley, J. Chem. Phys. 110, 5789 (1999)ADSCrossRefGoogle Scholar
  50. 50.
    J. Tiggesbäumker, F. Stienkemeier, Phys. Chem. Chem. Phys. 9, 4748 (2007)CrossRefGoogle Scholar
  51. 51.
    B.L. Hammond, W.A. Jr Lester, P.J. Reynolds, Monte Carlo Methods in Ab-Initio Quantum Chemistry (World Scientific, Singapore, 1994)CrossRefGoogle Scholar
  52. 52.
    D. Blume, M. Lewerenz, F. Huisken, M. Kaloudis, J. Chem. Phys. 105, 8666 (1996)ADSCrossRefGoogle Scholar
  53. 53.
    F. Paesani, F.A. Gianturco, M. Lewerenz, J.P. Toennies, J. Chem. Phys. 112, 2239 (2000)ADSCrossRefGoogle Scholar
  54. 54.
    F. Paesani, F.A. Gianturco, J. Chem. Phys. 116, 10170 (2002)ADSCrossRefGoogle Scholar
  55. 55.
    F. Paesani, F.A. Gianturco, J. Chem. Phys. 117, 709 (2002)ADSCrossRefGoogle Scholar
  56. 56.
    C. Di Paola, F. Sebastianelli, E. Bodo, I. Baccarelli, F.A. Gianturco, M. Yurtsever, J. Chem. Theory Comput. 1, 1045 (2005)CrossRefGoogle Scholar
  57. 57.
    C. Di Paola, E. Bodo, F.A. Gianturco, Eur. Phys. J. D 40, 377 (2006)ADSCrossRefGoogle Scholar
  58. 58.
    A. Viel, M.V. Patel, P. Niyaz, K.B. Whaley, Comput. Phys. Commun. 145, 24 (2002)ADSCrossRefGoogle Scholar
  59. 59.
    A. Mushinski, M. Nightingale, J. Chem. Phys. 101, 8831 (1994)ADSCrossRefGoogle Scholar
  60. 60.
    F. Sebastianelli, I. Baccarelli, E. Bodo, C. Di Paola, F.A. Gianturco, M. Yurtsever, Comput. Mater. Sci. 35, 261 (2006)CrossRefGoogle Scholar
  61. 61.
    C.E. Chuaqui, R.J. LeRoy, A.R.W. McKellar, J. Chem. Phys. 101, 39 (1994)ADSCrossRefGoogle Scholar
  62. 62.
    K.A. Peterson, G.C. McBane, J. Chem. Phys. 123, 084314 (2005)ADSCrossRefGoogle Scholar
  63. 63.
    T.G. Heijmen, R. Moszynski, P. Wormer, A. van der Avoird, J. Chem. Phys. 107, 9921 (1997)ADSCrossRefGoogle Scholar
  64. 64.
    R.A. Aziz, F.R. McCourt, C.C.K. Wond, Mol. Phys. 61, 1487 (1987)ADSCrossRefGoogle Scholar
  65. 65.
    M.J.D. Powell, Comput. J. 7, 155 (1964)MathSciNetCrossRefGoogle Scholar
  66. 66.
    R. Moszynski, T. Korona, P.E.S. Wormer, A. van der Avoird, J. Chem. Phys. 103, 321 (1995)ADSCrossRefGoogle Scholar
  67. 67.
    J. Casulleras, J. Boronat, Phys. Rev. B 52, 3654 (1995)ADSCrossRefGoogle Scholar
  68. 68.
    F. Marinetti, F.A. Gianturco, Chem. Phys. 399, 205 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.S3 CenterCNR Institute of NanoscienceModenaItaly
  2. 2.Dipartimento di Scienze Fisiche e ChimicheUniversità degli Studi dell’AquilaL’AquilaItaly
  3. 3.Laboratoire de Chimie ThéoriqueSorbonne Universités, UPMC Univ Paris 06, CNRSPARIS CEDEX 05France

Personalised recommendations