Journal of Low Temperature Physics

, Volume 187, Issue 1–2, pp 182–191 | Cite as

Calorimetric Measurements at Low Temperatures in Toluene Glass and Crystal

  • C. Alvarez-Ney
  • J. Labarga
  • M. Moratalla
  • J. M. Castilla
  • M. A. Ramos


The specific heat of toluene in glass and crystal states has been measured both at low temperatures down to 1.8 K (using the thermal relaxation method) and in a wide temperature range up to the liquid state (using a quasiadiabatic continuous method). Our measurements therefore extend earlier published data to much lower temperatures, thereby allowing to explore the low-temperature “glassy anomalies” in the case of toluene. Surprisingly, no indication of the existence of tunneling states is found, at least within the temperature range studied. At moderate temperatures, our data either for the glass or for the crystal show good agreement with those found in the literature. Also, we have been able to prepare bulk samples of toluene glass by only doping with 2% mol ethanol instead of with higher impurity doses used by other authors.


Specific heat Glass transition Toluene Boson peak Tunneling states 



This work has been partially supported by the Spanish Ministry of Economy through Projects FIS2014-54498-R and MAT2014-57866-REDT, and through the “María de Maeztu” Programme for Units of Excellence in R&D (MDM-2014-0377), as well as by the Autonomous Community of Madrid through programme NANOFRONTMAG-CM (S2013/MIT-2850). One of us (M.A.R.) is grateful to Anthony Leggett for discussions and for his suggestion to measure the specific heat of toluene.


  1. 1.
    P.W. Anderson, Science 267, 1615 (1995)CrossRefGoogle Scholar
  2. 2.
    R.C. Zeller, R.O. Pohl, Phys. Rev. B 4, 2029 (1971)ADSCrossRefGoogle Scholar
  3. 3.
    W.A. Phillips (ed.), Amorphous Solids: Low Temperature Properties (Springer, Berlin, 1981)Google Scholar
  4. 4.
    W.A. Phillips, J. Low Temp. Phys. 7, 351 (1972)ADSCrossRefGoogle Scholar
  5. 5.
    P.W. Anderson, B.I. Halperin, C.M. Varma, Philos. Mag. 25, 1 (1972)ADSCrossRefGoogle Scholar
  6. 6.
    U. Buchenau, N. Nücker, A.J. Dianoux, Phys. Rev. Lett. 53, 2316 (1984)ADSCrossRefGoogle Scholar
  7. 7.
    U. Buchenau, M. Prager, N. Nücker, A.J. Dianoux, N. Ahmad, W.A. Phillips, Phys. Rev. B 34, 5665 (1986)ADSCrossRefGoogle Scholar
  8. 8.
    V.K. Malinovsky, V.N. Novikov, P.P. Parshin, A.P. Sokolov, M.G. Zemlyanov, Europhys. Lett. 11, 43 (1990)ADSCrossRefGoogle Scholar
  9. 9.
    M.A. Ramos, Phys. Rev. B 49, 702 (1994)ADSCrossRefGoogle Scholar
  10. 10.
    U. Buchenau, Y.M. Galperin, V.L. Gurevich, D.A. Parshin, M.A. Ramos, H.R. Schober, Phys. Rev. B 46, 2798 (1992)ADSCrossRefGoogle Scholar
  11. 11.
    For a review, see D.A. Parshin, Phys. Rev. B 49, 9400 (1994)Google Scholar
  12. 12.
    M.A. Ramos, U. Buchenau, Phys. Rev. B 55, 5749 (1997)ADSCrossRefGoogle Scholar
  13. 13.
    L. Gil, M.A. Ramos, A. Bringer, U. Buchenau, Phys. Rev. Lett. 70, 182 (1993)ADSCrossRefGoogle Scholar
  14. 14.
    V.L. Gurevich, D.A. Parshin, H.R. Schober, Phys. Rev. B 67, 094203 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    W. Schirmacher, Europhys. Lett. 73, 892 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    M.A. Ramos, Philos. Mag. 84, 1313 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    C.C. Yu, A.J. Leggett, Comments Condens. Matter Phys. 14, 231 (1988)Google Scholar
  18. 18.
    A.L. Burin, D. Natelson, D.D. Osheroff, Y. Kagan, in Tunnelling Systems in Amorphous and Crystalline Solids, Chap. 3, ed. by P. Esquinazi (Springer, Berlin, 1998)Google Scholar
  19. 19.
    T. Pérez-Castañeda, C. Rodríguez-Tinoco, J. Rodríguez-Viejo, M.A. Ramos, PNAS 111, 11275 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    A.J. Leggett, D.C. Vural, J. Phys. Chem. B 117, 12966 (2013)CrossRefGoogle Scholar
  21. 21.
    I.Y. Eremchev, Y.G. Vainer, A.V. Naumov, L. Kador, Phys. Chem. Chem. Phys. 13, 1843 (2011)CrossRefGoogle Scholar
  22. 22.
    E. Pérez-Enciso, M.A. Ramos, Thermochim. Acta 461, 50 (2007)CrossRefGoogle Scholar
  23. 23.
    T. Pérez-Castañeda, J. Azpeitia, J. Hanko, A. Fente, H. Suderow, M.A. Ramos, J. Low Temp. Phys. 173, 4 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    D.W. Scott et al., J. Phys. Chem. 66, 911 (1962)CrossRefGoogle Scholar
  25. 25.
    O. Yamamuro, I. Tsukushi, A. Lindqvist, S. Takahara, M. Ishikawa, T. Matsuo, J. Phys. Chem. B 102, 1605 (1998)CrossRefGoogle Scholar
  26. 26.
    O. Haida, H. Suga, S. Seki, J. Chem. Thermodyn. 9, 1133 (1977)CrossRefGoogle Scholar
  27. 27.
    C. Talón, M.A. Ramos, S. Vieira, Phys. Rev. B 66, 012201 (2002)ADSCrossRefGoogle Scholar
  28. 28.
    M.A. Ramos, C. Talón, R. Jiménez-Riobóo, S. Vieira, J. Phys. Condens. Matter 15, S1007 (2003)ADSCrossRefGoogle Scholar
  29. 29.
    M. Hassaine, M.A. Ramos, A.I. Krivchikov, I.V. Sharapova, O.A. Korolyuk, R.J. Jiménez-Riobóo, Phys. Rev. B 85, 104206 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    A.I. Krivchikov, M. Hassaine, I.V. Sharapova, O.A. Korolyuk, R.J. Jiménez-Riobóo, M.A. Ramos, J. Non Cryst. Solids 357, 524 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    A.I. Chumakov, A. Bosak, R. Rüffer, Phys. Rev. B 80, 094303 (2009)ADSCrossRefGoogle Scholar
  32. 32.
    G. Carini Jr. et al., Philos. Mag. 96, 761 (2016)ADSCrossRefGoogle Scholar
  33. 33.
    A.I. Chumakov et al., Phys. Rev. Lett. 92, 245508 (2004)ADSCrossRefGoogle Scholar
  34. 34.
    I. Tsukushi et al., J. Phys. Chem. Solids 60, 1541 (1999)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Laboratorio de Bajas Temperaturas, Departamento de Física de la Materia CondensadaUniversidad Autónoma de MadridMadridSpain
  2. 2.ETSI Caminos, Canales y PuertosUniversidad Politécnica de MadridMadridSpain
  3. 3.Condensed Matter Physics Center (IFIMAC) and Instituto Nicolás Cabrera (INC)Universidad Autónoma de MadridMadridSpain

Personalised recommendations