Advertisement

Journal of Low Temperature Physics

, Volume 187, Issue 1–2, pp 4–19 | Cite as

Metallic Hydrogen

  • Isaac F. SilveraEmail author
  • Ranga Dias
  • Ori Noked
  • Ashkan Salamat
  • Mohamed Zaghoo
Article
  • 746 Downloads

Abstract

One of the great challenges in condensed matter physics has been to produce metallic hydrogen (MH) in the laboratory. There are two approaches: solid molecular hydrogen can be compressed to high density at extreme pressures of order 5–6 megabars. The transition to MH should take place at low temperatures and is expected to occur as a structural first-order phase transition with dissociation of molecules into atoms, rather than the closing of a gap. A second approach is to produce dense molecular hydrogen at pressures of order 1–2 megabars and heat the sample. With increasing temperature, it was predicted that molecular hydrogen first melts and then dissociates to atomic metallic liquid hydrogen as a first-order phase transition. We have observed this liquid–liquid phase transition to metallic hydrogen, also called the plasma phase transition. In low-temperature studies, we have pressurized HD to over 3 megabars and observed two new phases. Molecular hydrogen has been pressurized to 4.2 megabars. A new phase transition has been observed at 3.55 megabars, but it is not yet metallic.

Keywords

Mixed Crystal Diamond Anvil Cell Phase Line Para Hydrogen Solid Hydrogen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The NSF, Grant DMR-1308641, the DOE Stockpile Stewardship Academic Alliance Program, grant DE-NA0001990, and NASA Earth and Space Science Fellowship Program, Award NNX14AP17H supported this research.

References

  1. 1.
    E. Wigner, H.B. Huntington, J. Chem. Phys. 3, 764 (1935)ADSCrossRefGoogle Scholar
  2. 2.
    J. McMinis, R.C. Clay III, D. Lee, M.A. Morales, Phys. Rev. Lett. 114, 105305 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    S. Azadi, B. Monserrat, W.M.C. Foulkes, R.J. Needs, Phys. Rev. Lett. 112, 165501(5) (2014)ADSGoogle Scholar
  4. 4.
    L.D. Landau, Y.B. Zeldovich, Acta Phys. Chim. USSR 18, 380 (1943)Google Scholar
  5. 5.
    G.E. Norman, A.N. Starostin, High Temp. 6, 394 (1968)Google Scholar
  6. 6.
    D.J. Stevenson, E.E. Salpeter, Astrophys. J. Suppl. Ser. 35, 221 (1977)ADSCrossRefGoogle Scholar
  7. 7.
    T. Guillot, D.J. Stevenson, W.B. Hubbard, D. Saumon, Jupiter: The Planet, Satellites and Magnetosphere (Cambridge University Press, Cambridge, 2003)Google Scholar
  8. 8.
    M. Zaghoo, A. Salamat, I.F. Silvera, Phys. Rev. B 93, 155128 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    D.E. Ramaker, L. Kumar, F.E. Harris, Phys. Rev. Lett. 34, 812 (1975)ADSCrossRefGoogle Scholar
  10. 10.
    C.F. Richardson, N.W. Ashcroft, Phys. Rev. Lett. 78, 118 (1997)ADSCrossRefGoogle Scholar
  11. 11.
    P. Cudazzo, G. Profeta, A. Sanna, A. Floris, A. Continenza, S. Massidda, E.K.U. Gross, Phys. Rev. Lett. 100, 257001 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    N.W. Ashcroft, Phys. Rev. Lett. 21, 1748 (1968)ADSCrossRefGoogle Scholar
  13. 13.
    E.G. Brovman, Y. Kagan, A. Kholas, Sov. Phys. JETP 34, 1300 (1972)ADSGoogle Scholar
  14. 14.
    A.H. MacDonald, C.P. Burgess, Phys. Rev. B 26, 2849 (1982)ADSCrossRefGoogle Scholar
  15. 15.
    J. Cole, I.F. Silvera, J.P. Foote, in STAIF-2008, ed. by A. C. P. 978 (Albequerque, NM, 2008), p. 977Google Scholar
  16. 16.
    R.C. Clay, J. Mcminis, J.M. McMahon, C. Pierleoni, D.M. Ceperley, M.A. Morales, Phys. Rev. B 89, 184106 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    F. Datchi, P. Loubeyre, R. LeToullec, Phys. Rev. B 61, 6535 (2000)ADSCrossRefGoogle Scholar
  18. 18.
    V.V. Kechin, J. Phys. Condens. Matter 7, 531 (1995)ADSCrossRefGoogle Scholar
  19. 19.
    E. Gregoryanz, A.F. Goncharov, K. Matsuishi, H.K. Mao, R.J. Hemley, Phys. Rev. Lett. 90, 175701 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    S.A. Bonev, E. Schwegler, T. Ogitsu, G. Galli, Nature 431, 669 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    C. Attaccalite, S. Sorella, Phys. Rev. Lett. 100, 114501 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    S. Deemyad, I.F. Silvera, Phys. Rev. Lett. 100, 155701 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    M.I. Eremets, I.A. Trojan, JETP Lett. 89, 174 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    N. Subramanian, A.F. Goncharov, V.V. Struzhkin, M. Somayazulu, R.J. Hemley, Proc. Natl. Acad. Sci. 108, 6014 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    V. Dzyabura, M. Zaghoo, I.F. Silvera, Proc. Natl. Acad. Sci. USA 110, 8040 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    R. Howie, P. Dalladay-Simpson, E. Gregoryanz, Nat. Mater. 14, 495 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    C.S. Zha, Bull. Am. Phys. Soc. (2016). http://meetings.aps.org/link/BAPS.2016.MAR.V21.3
  28. 28.
    I.F. Silvera, Rev. Mod. Phys. 52, 393 (1980)ADSCrossRefGoogle Scholar
  29. 29.
    W.N. Hardy, I.F. Silvera, J.P. McTague, Phys. Rev. B 12, 753 (1975)ADSCrossRefGoogle Scholar
  30. 30.
    I.F. Silvera, J. Low Temp. Phys. 112, 237 (1998)ADSCrossRefGoogle Scholar
  31. 31.
    P.W. Anderson, PRB 109, 1492 (1958)ADSCrossRefGoogle Scholar
  32. 32.
    D.A. Goldhammer, Dispersion und Absorption des Lichtes in Ruhenden Isotropen Koerpern: Theorie und ihre Folerungen (Teubner, Leipzig, Berlin, 1913)zbMATHGoogle Scholar
  33. 33.
    K.F. Herzfeld, Phys. Rev. 29, 701 (1927)ADSCrossRefGoogle Scholar
  34. 34.
    D. Saumon, G. Chabrier, Phys. Rev. A 46, 2084 (1992)ADSCrossRefGoogle Scholar
  35. 35.
    S. Scandolo, Proc. Natl. Acad. Sci. 100, 3051 (2003)ADSCrossRefGoogle Scholar
  36. 36.
    M.A. Morales, C. Pierleoni, E. Schwegler, D.M. Ceperley, PNAS 107, 1299 (2010)Google Scholar
  37. 37.
    M.A. Morales, J.M. McMahon, C. Pierleoni, D.M. Ceperley, Phys. Rev. Lett. 110, 065702 (2013)ADSCrossRefGoogle Scholar
  38. 38.
    G. Mazzola, S. Ynoki, S. Sorella, Nat. Commun. 5, 3487 (2014)ADSCrossRefGoogle Scholar
  39. 39.
    S.T. Weir, A.C. Mitchell, W.J. Nellis, Phys. Rev. Lett. 76, 1860 (1996)ADSCrossRefGoogle Scholar
  40. 40.
    P.M. Celliers, G.W. Collins, L.B.D. Silva, D.M. Gold, R. Cauble, R.J. Wallace, M.E. Foord, B.A. Hammel, Phys. Rev. Lett. 84, 5564 (2000)ADSCrossRefGoogle Scholar
  41. 41.
    G.W. Collins, P.M. Celliers, L.B.D. Silva, R. Cauble, D.M. Gold, M.E. Foord, N.C. Holmes, B.A. Hammel, R.J. Wallace, Phys. Rev. Lett. 87, 1655041 (2001)CrossRefGoogle Scholar
  42. 42.
    W. Lorenzen, B. Holst, R. Redmer, Phys. Rev. B 82, 195107 (2010)ADSCrossRefGoogle Scholar
  43. 43.
    I. Tamblyn, S.A. Bonev, Phys. Rev. Lett. 104, 065702 (2010)ADSCrossRefGoogle Scholar
  44. 44.
    M. Zaghoo, I.F. Silvera, arXiv:1701.03532 [cond-mat.mtrl-sci] (2017)
  45. 45.
    C. Pierleoni, M.A. Morales, G. Rillo, M.A. Strzhemechny, M. Holzmann, D.M. Ceperley, PNAS 113, 4953 (2016)ADSCrossRefGoogle Scholar
  46. 46.
    V.E. Fortov et al., Phys. Rev. Lett. 99, 185001 (2007)ADSCrossRefGoogle Scholar
  47. 47.
    M.D. Knudson, M.P. Desjarlais, A. Becker, R.W. Lemke, K.R. Cochrane, M.E. Savage, D.E. Bliss, T.R. Mattsson, R. Redmer, Science 348, 1455 (2015)ADSCrossRefGoogle Scholar
  48. 48.
    R.S. McWilliams, D.A. Dalton, M.F. Mahmood, A.F. Goncharov, Phys. Rev. Lett. 116, 255501 (2016)ADSCrossRefGoogle Scholar
  49. 49.
    I.F. Silvera, R. Husband, A. Salamat, M. Zaghoo, arXiv:1608.04479 (2016)
  50. 50.
    I.F. Silvera, R.J. Wijngaarden, Phys. Rev. Lett. 47, 39 (1981)ADSCrossRefGoogle Scholar
  51. 51.
    H.E. Lorenzana, I.F. Silvera, K.A. Goettel, Phys. Rev. Lett. 64, 1939 (1990)ADSCrossRefGoogle Scholar
  52. 52.
    R.J. Hemley, H.K. Mao, Phys. Rev. Lett. 61, 857 (1988)ADSCrossRefGoogle Scholar
  53. 53.
    H.E. Lorenzana, I.F. Silvera, K.A. Goettel, Phys. Rev. Lett. 63, 2080 (1989)ADSCrossRefGoogle Scholar
  54. 54.
    M.I. Eremets, I.A. Troyan, Nat. Mater. 10, 927 (2011)ADSCrossRefGoogle Scholar
  55. 55.
    W.J. Nellis, A.L. Ruoff, I.F. Silvera, arXiv:1201.0407v1 (2012)
  56. 56.
    R.T. Howie, C.L. Guillaume, T. Scheler, A.F. Goncharov, E. Gregoryanz, Phys. Rev. Lett. 108, 125501 (2012)ADSCrossRefGoogle Scholar
  57. 57.
    R.T. Howie, T. Scheler, C.L. Guillaume, E. Gregoryanz, Phys. Rev. B 86, 214104 (2012)ADSCrossRefGoogle Scholar
  58. 58.
    C.S. Zha, Z. Liu, M. Ahart, R. Boehler, R.J. Hemley, Phys. Rev. Lett. 110, 217402 (2013)ADSCrossRefGoogle Scholar
  59. 59.
    P. Loubeyre, F. Occelli, P. Dumas, Phys. Rev. B 87, 134101 (2013)ADSCrossRefGoogle Scholar
  60. 60.
    M.I. Eremets, I.A. Troyan, P. Lerch, A. Drozdov, High Press. Res. 33, 377 (2013)ADSCrossRefGoogle Scholar
  61. 61.
    C. Pickard, R.J. Needs, Nat. Phys. 3, 473 (2007)CrossRefGoogle Scholar
  62. 62.
    P.J. Pickard, M. Martinez-Canales, R.J. Needs, Phys. Rev. B 86, 059902(E) (2012)ADSCrossRefGoogle Scholar
  63. 63.
    C.J. Pickard, M. Martinez-Canales, R.J. Needs, Phys. Rev. B 85, 214114 (2012)ADSCrossRefGoogle Scholar
  64. 64.
    H. Liu, Y. Ma, Phys. Rev. Lett. 110, 025903 (2013)ADSCrossRefGoogle Scholar
  65. 65.
    I.B. Magdau, G.J. Ackland, Phys. Rev. B 87, 174110 (2013)ADSCrossRefGoogle Scholar
  66. 66.
    R. Dias, O. Noked, I.F. Silvera, PRL 116, 145501 (2016)ADSCrossRefGoogle Scholar
  67. 67.
    D.M. Brown, W.B. Daniels, Phys. Rev. A 45, 6429 (1992)ADSCrossRefGoogle Scholar
  68. 68.
    A. Chijioke, I.F. Silvera, Phys. Rev. Lett. 97, 255701 (2006)ADSCrossRefGoogle Scholar
  69. 69.
    P. Dalladay-Simpson, R.T. Howie, E. Gregoryanz, Nature 529, 63 (2016)ADSCrossRefGoogle Scholar
  70. 70.
    M.I. Eremets, I.A. Troyan, A.P. Drozdov, arXiv:1601.04479 (2016)
  71. 71.
    R. Dias, O. Noked, I.F. Silvera, Condensed Matter, arXiv:1605.05703 (2016)
  72. 72.
    R. Dias, O. Noked, I.F. Silvera, arXiv:1603.02162v1 (2016)
  73. 73.
    R. Dias, I.F. Silvera, Condensed matter, arXiv:1610.01634 (2016)
  74. 74.
    R. Dias, I.F. Silvera, Science (2017). doi: 10.1126/science.aal1579

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Lyman Laboratory of PhysicsHarvard UniversityCambridgeUSA
  2. 2.Department of PhysicsUniversity of NevadaLas VegasUSA

Personalised recommendations