Abstract
One of the great challenges in condensed matter physics has been to produce metallic hydrogen (MH) in the laboratory. There are two approaches: solid molecular hydrogen can be compressed to high density at extreme pressures of order 5–6 megabars. The transition to MH should take place at low temperatures and is expected to occur as a structural first-order phase transition with dissociation of molecules into atoms, rather than the closing of a gap. A second approach is to produce dense molecular hydrogen at pressures of order 1–2 megabars and heat the sample. With increasing temperature, it was predicted that molecular hydrogen first melts and then dissociates to atomic metallic liquid hydrogen as a first-order phase transition. We have observed this liquid–liquid phase transition to metallic hydrogen, also called the plasma phase transition. In low-temperature studies, we have pressurized HD to over 3 megabars and observed two new phases. Molecular hydrogen has been pressurized to 4.2 megabars. A new phase transition has been observed at 3.55 megabars, but it is not yet metallic.
Keywords
Mixed Crystal Diamond Anvil Cell Phase Line Para Hydrogen Solid HydrogenNotes
Acknowledgements
The NSF, Grant DMR-1308641, the DOE Stockpile Stewardship Academic Alliance Program, grant DE-NA0001990, and NASA Earth and Space Science Fellowship Program, Award NNX14AP17H supported this research.
References
- 1.E. Wigner, H.B. Huntington, J. Chem. Phys. 3, 764 (1935)ADSCrossRefGoogle Scholar
- 2.J. McMinis, R.C. Clay III, D. Lee, M.A. Morales, Phys. Rev. Lett. 114, 105305 (2015)ADSCrossRefGoogle Scholar
- 3.S. Azadi, B. Monserrat, W.M.C. Foulkes, R.J. Needs, Phys. Rev. Lett. 112, 165501(5) (2014)ADSGoogle Scholar
- 4.L.D. Landau, Y.B. Zeldovich, Acta Phys. Chim. USSR 18, 380 (1943)Google Scholar
- 5.G.E. Norman, A.N. Starostin, High Temp. 6, 394 (1968)Google Scholar
- 6.D.J. Stevenson, E.E. Salpeter, Astrophys. J. Suppl. Ser. 35, 221 (1977)ADSCrossRefGoogle Scholar
- 7.T. Guillot, D.J. Stevenson, W.B. Hubbard, D. Saumon, Jupiter: The Planet, Satellites and Magnetosphere (Cambridge University Press, Cambridge, 2003)Google Scholar
- 8.M. Zaghoo, A. Salamat, I.F. Silvera, Phys. Rev. B 93, 155128 (2016)ADSCrossRefGoogle Scholar
- 9.D.E. Ramaker, L. Kumar, F.E. Harris, Phys. Rev. Lett. 34, 812 (1975)ADSCrossRefGoogle Scholar
- 10.C.F. Richardson, N.W. Ashcroft, Phys. Rev. Lett. 78, 118 (1997)ADSCrossRefGoogle Scholar
- 11.P. Cudazzo, G. Profeta, A. Sanna, A. Floris, A. Continenza, S. Massidda, E.K.U. Gross, Phys. Rev. Lett. 100, 257001 (2008)ADSCrossRefGoogle Scholar
- 12.N.W. Ashcroft, Phys. Rev. Lett. 21, 1748 (1968)ADSCrossRefGoogle Scholar
- 13.E.G. Brovman, Y. Kagan, A. Kholas, Sov. Phys. JETP 34, 1300 (1972)ADSGoogle Scholar
- 14.A.H. MacDonald, C.P. Burgess, Phys. Rev. B 26, 2849 (1982)ADSCrossRefGoogle Scholar
- 15.J. Cole, I.F. Silvera, J.P. Foote, in STAIF-2008, ed. by A. C. P. 978 (Albequerque, NM, 2008), p. 977Google Scholar
- 16.R.C. Clay, J. Mcminis, J.M. McMahon, C. Pierleoni, D.M. Ceperley, M.A. Morales, Phys. Rev. B 89, 184106 (2014)ADSCrossRefGoogle Scholar
- 17.F. Datchi, P. Loubeyre, R. LeToullec, Phys. Rev. B 61, 6535 (2000)ADSCrossRefGoogle Scholar
- 18.V.V. Kechin, J. Phys. Condens. Matter 7, 531 (1995)ADSCrossRefGoogle Scholar
- 19.E. Gregoryanz, A.F. Goncharov, K. Matsuishi, H.K. Mao, R.J. Hemley, Phys. Rev. Lett. 90, 175701 (2003)ADSCrossRefGoogle Scholar
- 20.S.A. Bonev, E. Schwegler, T. Ogitsu, G. Galli, Nature 431, 669 (2004)ADSCrossRefGoogle Scholar
- 21.C. Attaccalite, S. Sorella, Phys. Rev. Lett. 100, 114501 (2008)ADSCrossRefGoogle Scholar
- 22.S. Deemyad, I.F. Silvera, Phys. Rev. Lett. 100, 155701 (2008)ADSCrossRefGoogle Scholar
- 23.M.I. Eremets, I.A. Trojan, JETP Lett. 89, 174 (2009)ADSCrossRefGoogle Scholar
- 24.N. Subramanian, A.F. Goncharov, V.V. Struzhkin, M. Somayazulu, R.J. Hemley, Proc. Natl. Acad. Sci. 108, 6014 (2011)ADSCrossRefGoogle Scholar
- 25.V. Dzyabura, M. Zaghoo, I.F. Silvera, Proc. Natl. Acad. Sci. USA 110, 8040 (2013)ADSCrossRefGoogle Scholar
- 26.R. Howie, P. Dalladay-Simpson, E. Gregoryanz, Nat. Mater. 14, 495 (2015)ADSCrossRefGoogle Scholar
- 27.C.S. Zha, Bull. Am. Phys. Soc. (2016). http://meetings.aps.org/link/BAPS.2016.MAR.V21.3
- 28.I.F. Silvera, Rev. Mod. Phys. 52, 393 (1980)ADSCrossRefGoogle Scholar
- 29.W.N. Hardy, I.F. Silvera, J.P. McTague, Phys. Rev. B 12, 753 (1975)ADSCrossRefGoogle Scholar
- 30.I.F. Silvera, J. Low Temp. Phys. 112, 237 (1998)ADSCrossRefGoogle Scholar
- 31.P.W. Anderson, PRB 109, 1492 (1958)ADSCrossRefGoogle Scholar
- 32.D.A. Goldhammer, Dispersion und Absorption des Lichtes in Ruhenden Isotropen Koerpern: Theorie und ihre Folerungen (Teubner, Leipzig, Berlin, 1913)zbMATHGoogle Scholar
- 33.K.F. Herzfeld, Phys. Rev. 29, 701 (1927)ADSCrossRefGoogle Scholar
- 34.D. Saumon, G. Chabrier, Phys. Rev. A 46, 2084 (1992)ADSCrossRefGoogle Scholar
- 35.S. Scandolo, Proc. Natl. Acad. Sci. 100, 3051 (2003)ADSCrossRefGoogle Scholar
- 36.M.A. Morales, C. Pierleoni, E. Schwegler, D.M. Ceperley, PNAS 107, 1299 (2010)Google Scholar
- 37.M.A. Morales, J.M. McMahon, C. Pierleoni, D.M. Ceperley, Phys. Rev. Lett. 110, 065702 (2013)ADSCrossRefGoogle Scholar
- 38.G. Mazzola, S. Ynoki, S. Sorella, Nat. Commun. 5, 3487 (2014)ADSCrossRefGoogle Scholar
- 39.S.T. Weir, A.C. Mitchell, W.J. Nellis, Phys. Rev. Lett. 76, 1860 (1996)ADSCrossRefGoogle Scholar
- 40.P.M. Celliers, G.W. Collins, L.B.D. Silva, D.M. Gold, R. Cauble, R.J. Wallace, M.E. Foord, B.A. Hammel, Phys. Rev. Lett. 84, 5564 (2000)ADSCrossRefGoogle Scholar
- 41.G.W. Collins, P.M. Celliers, L.B.D. Silva, R. Cauble, D.M. Gold, M.E. Foord, N.C. Holmes, B.A. Hammel, R.J. Wallace, Phys. Rev. Lett. 87, 1655041 (2001)CrossRefGoogle Scholar
- 42.W. Lorenzen, B. Holst, R. Redmer, Phys. Rev. B 82, 195107 (2010)ADSCrossRefGoogle Scholar
- 43.I. Tamblyn, S.A. Bonev, Phys. Rev. Lett. 104, 065702 (2010)ADSCrossRefGoogle Scholar
- 44.M. Zaghoo, I.F. Silvera, arXiv:1701.03532 [cond-mat.mtrl-sci] (2017)
- 45.C. Pierleoni, M.A. Morales, G. Rillo, M.A. Strzhemechny, M. Holzmann, D.M. Ceperley, PNAS 113, 4953 (2016)ADSCrossRefGoogle Scholar
- 46.V.E. Fortov et al., Phys. Rev. Lett. 99, 185001 (2007)ADSCrossRefGoogle Scholar
- 47.M.D. Knudson, M.P. Desjarlais, A. Becker, R.W. Lemke, K.R. Cochrane, M.E. Savage, D.E. Bliss, T.R. Mattsson, R. Redmer, Science 348, 1455 (2015)ADSCrossRefGoogle Scholar
- 48.R.S. McWilliams, D.A. Dalton, M.F. Mahmood, A.F. Goncharov, Phys. Rev. Lett. 116, 255501 (2016)ADSCrossRefGoogle Scholar
- 49.I.F. Silvera, R. Husband, A. Salamat, M. Zaghoo, arXiv:1608.04479 (2016)
- 50.I.F. Silvera, R.J. Wijngaarden, Phys. Rev. Lett. 47, 39 (1981)ADSCrossRefGoogle Scholar
- 51.H.E. Lorenzana, I.F. Silvera, K.A. Goettel, Phys. Rev. Lett. 64, 1939 (1990)ADSCrossRefGoogle Scholar
- 52.R.J. Hemley, H.K. Mao, Phys. Rev. Lett. 61, 857 (1988)ADSCrossRefGoogle Scholar
- 53.H.E. Lorenzana, I.F. Silvera, K.A. Goettel, Phys. Rev. Lett. 63, 2080 (1989)ADSCrossRefGoogle Scholar
- 54.M.I. Eremets, I.A. Troyan, Nat. Mater. 10, 927 (2011)ADSCrossRefGoogle Scholar
- 55.W.J. Nellis, A.L. Ruoff, I.F. Silvera, arXiv:1201.0407v1 (2012)
- 56.R.T. Howie, C.L. Guillaume, T. Scheler, A.F. Goncharov, E. Gregoryanz, Phys. Rev. Lett. 108, 125501 (2012)ADSCrossRefGoogle Scholar
- 57.R.T. Howie, T. Scheler, C.L. Guillaume, E. Gregoryanz, Phys. Rev. B 86, 214104 (2012)ADSCrossRefGoogle Scholar
- 58.C.S. Zha, Z. Liu, M. Ahart, R. Boehler, R.J. Hemley, Phys. Rev. Lett. 110, 217402 (2013)ADSCrossRefGoogle Scholar
- 59.P. Loubeyre, F. Occelli, P. Dumas, Phys. Rev. B 87, 134101 (2013)ADSCrossRefGoogle Scholar
- 60.M.I. Eremets, I.A. Troyan, P. Lerch, A. Drozdov, High Press. Res. 33, 377 (2013)ADSCrossRefGoogle Scholar
- 61.C. Pickard, R.J. Needs, Nat. Phys. 3, 473 (2007)CrossRefGoogle Scholar
- 62.P.J. Pickard, M. Martinez-Canales, R.J. Needs, Phys. Rev. B 86, 059902(E) (2012)ADSCrossRefGoogle Scholar
- 63.C.J. Pickard, M. Martinez-Canales, R.J. Needs, Phys. Rev. B 85, 214114 (2012)ADSCrossRefGoogle Scholar
- 64.H. Liu, Y. Ma, Phys. Rev. Lett. 110, 025903 (2013)ADSCrossRefGoogle Scholar
- 65.I.B. Magdau, G.J. Ackland, Phys. Rev. B 87, 174110 (2013)ADSCrossRefGoogle Scholar
- 66.R. Dias, O. Noked, I.F. Silvera, PRL 116, 145501 (2016)ADSCrossRefGoogle Scholar
- 67.D.M. Brown, W.B. Daniels, Phys. Rev. A 45, 6429 (1992)ADSCrossRefGoogle Scholar
- 68.A. Chijioke, I.F. Silvera, Phys. Rev. Lett. 97, 255701 (2006)ADSCrossRefGoogle Scholar
- 69.P. Dalladay-Simpson, R.T. Howie, E. Gregoryanz, Nature 529, 63 (2016)ADSCrossRefGoogle Scholar
- 70.M.I. Eremets, I.A. Troyan, A.P. Drozdov, arXiv:1601.04479 (2016)
- 71.R. Dias, O. Noked, I.F. Silvera, Condensed Matter, arXiv:1605.05703 (2016)
- 72.R. Dias, O. Noked, I.F. Silvera, arXiv:1603.02162v1 (2016)
- 73.R. Dias, I.F. Silvera, Condensed matter, arXiv:1610.01634 (2016)
- 74.R. Dias, I.F. Silvera, Science (2017). doi: 10.1126/science.aal1579