Journal of Low Temperature Physics

, Volume 187, Issue 3–4, pp 195–220 | Cite as

On the Transition from Potential Flow to Turbulence Around a Microsphere Oscillating in Superfluid \(^4\hbox {He}\)

Article

Abstract

The flow of superfluid \(^4\hbox {He}\) around a translationally oscillating sphere, levitating without mechanical support, can either be laminar or turbulent, depending on the velocity amplitude. Below a critical velocity \(v_\mathrm{c}\) that scales as \(\omega ^{1/2}\) and is temperature independent below 1 K, the flow is laminar (potential flow). Below 0.5 K, the linear drag force is caused by ballistic phonon scattering that vanishes as \(T^4\) until background damping, measured in the empty cell, becomes dominant for \(T < 0.1\) K. Increasing the velocity amplitude above \(v_\mathrm{c}\) leads to a transition from potential flow to turbulence, where the large turbulent drag force varies as \((v^2 - v_\mathrm{c}^2)\). In a small velocity interval \(\Delta v {/} v_\mathrm{c} \le 3\)% above \(v_\mathrm{c}\), the flow is unstable below 0.5 K, switching intermittently between both patterns. From time series recorded at constant temperature and driving force, the lifetimes of both phases are analyzed statistically. We observe metastable states of potential flow which, after a mean lifetime of 25 min, ultimately break down due to vorticity created by natural background radioactivity. The lifetimes of the turbulent phases have an exponential distribution, and the mean increases exponentially with \(\Delta v^2\). We investigate the frequency at which the vortex rings are shed from the sphere. Our results are compared with recent data of other authors on vortex shedding by moving a laser beam through a Bose–Einstein condensate. Finally, we show that our observed transition to turbulence belongs to the class of “supertransient chaos” where lifetimes of the turbulent states increase faster than exponentially.

Keywords

Quantum turbulence Superfluid helium Oscillatory flow Critical velocity Vortex shedding Bose–Einstein condensates 

References

  1. 1.
    M. Tsubota, J. Phys. Soc. Jpn. 77, 111006 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    R.J. Donnelly, Quantized Vortices in Helium II (Cambridge University Press, Cambridge, 1991)Google Scholar
  3. 3.
    W.F. Vinen, L. Skrbek, Prog. Low Temp. Phys. 16, 195–246 (2009)CrossRefGoogle Scholar
  4. 4.
    W.F. Vinen, L. Skrbek, Proc. Natl. Acad. Sci. 111, 4699–4706 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    D.I. Bradley et al., J. Low Temp. Phys. 184, 1080–1091 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    T. Zhang, S. Van Sciver, J. Low Temp. Phys. 138, 865–870 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    M. Paoletti, M. Fisher, K. Sreenivasan, D. Lathrop, Phys. Rev. Lett. 101, 154501 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    W. Guo, M. La Mantia, D.P. Lathrop, S.W. Van Sciver, Proc. Natl. Acad. Sci. 111, 4653–4658 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    E. Zemma, M. Tsubota, J. Luzuriaga, J. Low Temp. Phys. 179, 310–319 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    A.L. Fetter, Rev. Mod. Phys. 81, 647 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    A.C. White, B.P. Anderson, V.S. Bagnato, Proc. Natl. Acad. Sci. 111, 4719–4726 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    V.B. Eltsov et al., Prog. Low Temp. Phys. 16, 45–146 (2009)CrossRefGoogle Scholar
  13. 13.
    M. Niemetz, W. Schoepe, J. Low Temp. Phys. 135, 447–469 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    J. Jäger, B. Schuderer, W. Schoepe, Phys. Rev. Lett. 74, 566 (1995)ADSCrossRefGoogle Scholar
  15. 15.
    J. Jäger, B. Schuderer, W. Schoepe, Phys. B 210, 201–208 (1995)ADSCrossRefGoogle Scholar
  16. 16.
    M. Niemetz, H. Kerscher, W. Schoepe, in Quantized Vortex Dynamics and Superfluid Turbulence, eds. by C.F. Barenghi, R.J. Donnelly, W.F. Vinen (Springer, Berlin, 2001), p. 87Google Scholar
  17. 17.
    R. Goto et al., Phys. Rev. Lett. 100, 045301 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    W. Schoepe, R. Hänninen, M. Niemetz, J. Low Temp. Phys. 178, 383–391 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    H. Yano, private communicationGoogle Scholar
  20. 20.
    S.I. Ahlstrom et al., Phys. Rev. B 89, 014515 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    R. Hänninen, W. Schoepe, arXiv:0801.2521 [cond-mat.other]
  22. 22.
    N.B. Kopnin, Phys. Rev. Lett. 92, 135301 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    R.J. Donnelly, C.F. Barenghi, J. Phys. Chem. Ref. Data 27, 1217–1274 (1998)ADSCrossRefGoogle Scholar
  24. 24.
    R. Hänninen, W. Schoepe, J. Low Temp. Phys. 153, 189–196 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    M.J. Jackson et al., J. Low Temp. Phys. 183, 208–214 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    R. Hänninen, W. Schoepe, J. Low Temp. Phys. 164, 1–4 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    K.W. Schwarz, Phys. Rev. B 38, 2398–2417 (1988)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    V. Kotsubo, G.W. Swift, J. Low Temp. Phys. 78, 351–373 (1990)ADSCrossRefGoogle Scholar
  29. 29.
    R. Hänninen, W. Schoepe, J. Low Temp. Phys. 158, 410–414 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    M. Niemetz, H. Kerscher, W. Schoepe, J. Low Temp. Phys. 126, 287–296 (2002)ADSCrossRefGoogle Scholar
  31. 31.
    H. Yano et al., J. Low Temp. Phys. 138, 561–566 (2005)ADSCrossRefGoogle Scholar
  32. 32.
    D.I. Bradley et al., Phys. Rev. B 89, 214503 (2014)ADSCrossRefGoogle Scholar
  33. 33.
    H. Yano et al., Phys. Rev. B 81, 220507(R) (2010)ADSCrossRefGoogle Scholar
  34. 34.
    W. Schoepe, J. Low Temp. Phys. 173, 170–176 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    W. Schoepe, JETP Lett. 102, 105–107 (2015). arXiv:1506.05003v3 [cond-mat.other]
  36. 36.
    M.R. Leadbetter, G. Lindgren, H. Rootzén, Extremes and Related Properties of Random Sequences and Processes (Springer, New York, 1983)CrossRefMATHGoogle Scholar
  37. 37.
    V.I. Tikhonov, Sov. Phys. Usp. 5, 594–611 (1963)ADSCrossRefGoogle Scholar
  38. 38.
    W. Schoepe, J. Low Temp. Phys. (2016). doi:10.1007/s10909-016-1653-2 Google Scholar
  39. 39.
    Woo Jin Kwon, Sang Won Seo, Yong-il Shin, Phys. Rev. A 92, 033613 (2015)ADSCrossRefGoogle Scholar
  40. 40.
    C. Raman et al., Phys. Rev. Lett. 83, 2502 (1999)ADSCrossRefGoogle Scholar
  41. 41.
    R. Onofrio et al., Phys. Rev. Lett. 85, 2228 (2000)ADSCrossRefGoogle Scholar
  42. 42.
    C. Raman, R. Onofrio, J.M. Vogels, J.R. Abo-Shaeer, W. Ketterle, J. Low Temp. Phys. 122, 99–116 (2001)ADSCrossRefGoogle Scholar
  43. 43.
    B. Jackson, J.F. McCann, C.S. Adams, Phys. Rev. A 61, 051603(R) (2000)ADSCrossRefGoogle Scholar
  44. 44.
    T. Frisch, Y. Pomeau, S. Rica, Phys. Rev. Lett. 69, 1644 (1992)ADSCrossRefGoogle Scholar
  45. 45.
    K. Fujimoto, M. Tsubota, Phys. Rev. A 83, 053609 (2011)ADSCrossRefGoogle Scholar
  46. 46.
    V.P. Singh et al., Phys. Rev. A 93, 023634 (2016)ADSCrossRefGoogle Scholar
  47. 47.
    M.T. Reeves, T.P. Billam, B.P. Anderson, A.S. Bradley, Phys. Rev. Lett. 114, 155302 (2015)ADSCrossRefGoogle Scholar
  48. 48.
    Y.-C. Lai, T. Tél, in Transient Chaos (Applied Mathematical Sciences, vol. 173, Ch. 9.6 (Springer, New York, 2011)Google Scholar
  49. 49.
    G. Baym, D.H. Beck, C.J. Pethick, J. Low Temp. Phys. 178, 200–228 (2015)ADSCrossRefGoogle Scholar
  50. 50.
    M. Niemetz, H. Kerscher, W. Schoepe, J. Low Temp. Phys. 124, 163–168 (2001)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.OTH RegensburgRegensburgGermany
  2. 2.Low Temperature Laboratory, Department of Applied PhysicsAalto UniversityEspooFinland
  3. 3.Fakultät für PhysikUniversität RegensburgRegensburgGermany

Personalised recommendations