# On the Transition from Potential Flow to Turbulence Around a Microsphere Oscillating in Superfluid \(^4\hbox {He}\)

## Abstract

The flow of superfluid \(^4\hbox {He}\) around a translationally oscillating sphere, levitating without mechanical support, can either be laminar or turbulent, depending on the velocity amplitude. Below a critical velocity \(v_\mathrm{c}\) that scales as \(\omega ^{1/2}\) and is temperature independent below 1 K, the flow is laminar (potential flow). Below 0.5 K, the linear drag force is caused by ballistic phonon scattering that vanishes as \(T^4\) until background damping, measured in the empty cell, becomes dominant for \(T < 0.1\) K. Increasing the velocity amplitude above \(v_\mathrm{c}\) leads to a transition from potential flow to turbulence, where the large turbulent drag force varies as \((v^2 - v_\mathrm{c}^2)\). In a small velocity interval \(\Delta v {/} v_\mathrm{c} \le 3\)% above \(v_\mathrm{c}\), the flow is unstable below 0.5 K, switching intermittently between both patterns. From time series recorded at constant temperature and driving force, the lifetimes of both phases are analyzed statistically. We observe metastable states of potential flow which, after a mean lifetime of 25 min, ultimately break down due to vorticity created by natural background radioactivity. The lifetimes of the turbulent phases have an exponential distribution, and the mean increases exponentially with \(\Delta v^2\). We investigate the frequency at which the vortex rings are shed from the sphere. Our results are compared with recent data of other authors on vortex shedding by moving a laser beam through a Bose–Einstein condensate. Finally, we show that our observed transition to turbulence belongs to the class of “supertransient chaos” where lifetimes of the turbulent states increase faster than exponentially.

## Keywords

Quantum turbulence Superfluid helium Oscillatory flow Critical velocity Vortex shedding Bose–Einstein condensates## Notes

### Acknowledgements

We acknowledge early contributions by K. Gloos, J. Simola and J. Tuoriniemi (then all at Helsinki University of Technology, Finland), who invented the technique to oscillate a levitating particle and shared their expertise with us. Experiments with a levitating sphere immersed in superfluid helium were conducted at Regensburg University from 1993 on by H. Barowski and J. Jäger. H. Kerscher was a co-worker on the experiment in 2000. M. Bleher (Federal Office for Radiation Protection (Bf S), Braunschweig) performed the measurements of the dose rate of the natural background radiation in our laboratory. A helpful discussion with the late Shaun Fisher is gratefully acknowledged. Support and encouragement came from M. Krusius (Aalto University, Helsinki) and from K.F. Renk (Regensburg University). R.H. was supported by the Academy of Finland and M.N. by the Deutsche Forschungsgemeinschaft. W.S. is grateful to the O.V. Lounasmaa Laboratory (Aalto University) for the warm hospitality experienced during many visits.

## References

- 1.M. Tsubota, J. Phys. Soc. Jpn.
**77**, 111006 (2008)ADSCrossRefGoogle Scholar - 2.R.J. Donnelly,
*Quantized Vortices in Helium II*(Cambridge University Press, Cambridge, 1991)Google Scholar - 3.W.F. Vinen, L. Skrbek, Prog. Low Temp. Phys.
**16**, 195–246 (2009)CrossRefGoogle Scholar - 4.W.F. Vinen, L. Skrbek, Proc. Natl. Acad. Sci.
**111**, 4699–4706 (2014)ADSCrossRefGoogle Scholar - 5.D.I. Bradley et al., J. Low Temp. Phys.
**184**, 1080–1091 (2016)ADSCrossRefGoogle Scholar - 6.T. Zhang, S. Van Sciver, J. Low Temp. Phys.
**138**, 865–870 (2005)ADSCrossRefGoogle Scholar - 7.M. Paoletti, M. Fisher, K. Sreenivasan, D. Lathrop, Phys. Rev. Lett.
**101**, 154501 (2008)ADSCrossRefGoogle Scholar - 8.W. Guo, M. La Mantia, D.P. Lathrop, S.W. Van Sciver, Proc. Natl. Acad. Sci.
**111**, 4653–4658 (2014)ADSCrossRefGoogle Scholar - 9.E. Zemma, M. Tsubota, J. Luzuriaga, J. Low Temp. Phys.
**179**, 310–319 (2015)ADSCrossRefGoogle Scholar - 10.A.L. Fetter, Rev. Mod. Phys.
**81**, 647 (2009)ADSCrossRefGoogle Scholar - 11.A.C. White, B.P. Anderson, V.S. Bagnato, Proc. Natl. Acad. Sci.
**111**, 4719–4726 (2014)ADSCrossRefGoogle Scholar - 12.V.B. Eltsov et al., Prog. Low Temp. Phys.
**16**, 45–146 (2009)CrossRefGoogle Scholar - 13.M. Niemetz, W. Schoepe, J. Low Temp. Phys.
**135**, 447–469 (2004)ADSCrossRefGoogle Scholar - 14.J. Jäger, B. Schuderer, W. Schoepe, Phys. Rev. Lett.
**74**, 566 (1995)ADSCrossRefGoogle Scholar - 15.J. Jäger, B. Schuderer, W. Schoepe, Phys. B
**210**, 201–208 (1995)ADSCrossRefGoogle Scholar - 16.M. Niemetz, H. Kerscher, W. Schoepe, in
*Quantized Vortex Dynamics and Superfluid Turbulence*, eds. by C.F. Barenghi, R.J. Donnelly, W.F. Vinen (Springer, Berlin, 2001), p. 87Google Scholar - 17.R. Goto et al., Phys. Rev. Lett.
**100**, 045301 (2008)ADSCrossRefGoogle Scholar - 18.W. Schoepe, R. Hänninen, M. Niemetz, J. Low Temp. Phys.
**178**, 383–391 (2015)ADSCrossRefGoogle Scholar - 19.H. Yano, private communicationGoogle Scholar
- 20.S.I. Ahlstrom et al., Phys. Rev. B
**89**, 014515 (2014)ADSCrossRefGoogle Scholar - 21.R. Hänninen, W. Schoepe, arXiv:0801.2521 [cond-mat.other]
- 22.N.B. Kopnin, Phys. Rev. Lett.
**92**, 135301 (2004)ADSCrossRefGoogle Scholar - 23.R.J. Donnelly, C.F. Barenghi, J. Phys. Chem. Ref. Data
**27**, 1217–1274 (1998)ADSCrossRefGoogle Scholar - 24.R. Hänninen, W. Schoepe, J. Low Temp. Phys.
**153**, 189–196 (2008)ADSCrossRefGoogle Scholar - 25.M.J. Jackson et al., J. Low Temp. Phys.
**183**, 208–214 (2016)ADSCrossRefGoogle Scholar - 26.R. Hänninen, W. Schoepe, J. Low Temp. Phys.
**164**, 1–4 (2011)ADSCrossRefGoogle Scholar - 27.K.W. Schwarz, Phys. Rev. B
**38**, 2398–2417 (1988)ADSMathSciNetCrossRefGoogle Scholar - 28.V. Kotsubo, G.W. Swift, J. Low Temp. Phys.
**78**, 351–373 (1990)ADSCrossRefGoogle Scholar - 29.R. Hänninen, W. Schoepe, J. Low Temp. Phys.
**158**, 410–414 (2010)ADSCrossRefGoogle Scholar - 30.M. Niemetz, H. Kerscher, W. Schoepe, J. Low Temp. Phys.
**126**, 287–296 (2002)ADSCrossRefGoogle Scholar - 31.H. Yano et al., J. Low Temp. Phys.
**138**, 561–566 (2005)ADSCrossRefGoogle Scholar - 32.D.I. Bradley et al., Phys. Rev. B
**89**, 214503 (2014)ADSCrossRefGoogle Scholar - 33.H. Yano et al., Phys. Rev. B
**81**, 220507(R) (2010)ADSCrossRefGoogle Scholar - 34.W. Schoepe, J. Low Temp. Phys.
**173**, 170–176 (2013)ADSCrossRefGoogle Scholar - 35.W. Schoepe, JETP Lett.
**102**, 105–107 (2015). arXiv:1506.05003v3 [cond-mat.other] - 36.M.R. Leadbetter, G. Lindgren, H. Rootzén,
*Extremes and Related Properties of Random Sequences and Processes*(Springer, New York, 1983)CrossRefMATHGoogle Scholar - 37.V.I. Tikhonov, Sov. Phys. Usp.
**5**, 594–611 (1963)ADSCrossRefGoogle Scholar - 38.W. Schoepe, J. Low Temp. Phys. (2016). doi: 10.1007/s10909-016-1653-2 Google Scholar
- 39.Woo Jin Kwon, Sang Won Seo, Yong-il Shin, Phys. Rev. A
**92**, 033613 (2015)ADSCrossRefGoogle Scholar - 40.C. Raman et al., Phys. Rev. Lett.
**83**, 2502 (1999)ADSCrossRefGoogle Scholar - 41.R. Onofrio et al., Phys. Rev. Lett.
**85**, 2228 (2000)ADSCrossRefGoogle Scholar - 42.C. Raman, R. Onofrio, J.M. Vogels, J.R. Abo-Shaeer, W. Ketterle, J. Low Temp. Phys.
**122**, 99–116 (2001)ADSCrossRefGoogle Scholar - 43.B. Jackson, J.F. McCann, C.S. Adams, Phys. Rev. A
**61**, 051603(R) (2000)ADSCrossRefGoogle Scholar - 44.T. Frisch, Y. Pomeau, S. Rica, Phys. Rev. Lett.
**69**, 1644 (1992)ADSCrossRefGoogle Scholar - 45.K. Fujimoto, M. Tsubota, Phys. Rev. A
**83**, 053609 (2011)ADSCrossRefGoogle Scholar - 46.V.P. Singh et al., Phys. Rev. A
**93**, 023634 (2016)ADSCrossRefGoogle Scholar - 47.M.T. Reeves, T.P. Billam, B.P. Anderson, A.S. Bradley, Phys. Rev. Lett.
**114**, 155302 (2015)ADSCrossRefGoogle Scholar - 48.Y.-C. Lai, T. Tél, in
*Transient Chaos*(Applied Mathematical Sciences, vol. 173, Ch. 9.6 (Springer, New York, 2011)Google Scholar - 49.G. Baym, D.H. Beck, C.J. Pethick, J. Low Temp. Phys.
**178**, 200–228 (2015)ADSCrossRefGoogle Scholar - 50.M. Niemetz, H. Kerscher, W. Schoepe, J. Low Temp. Phys.
**124**, 163–168 (2001)ADSCrossRefGoogle Scholar