Advertisement

Journal of Low Temperature Physics

, Volume 187, Issue 5–6, pp 553–558 | Cite as

Pressure Effect on the Einstein-Like Phonon Mode in Superconducting \(\hbox {YB}_{6}\)

  • Mat. Orendáč
  • S. GabániEmail author
  • E. Gažo
  • G. Pristáš
  • K. Flachbart
  • T. Mori
  • X. Wang
  • K. Kamenev
Article

Abstract

\(\hbox {YB}_{6}\) is known as a conventional type-II BCS superconductor in which the strong coupling superconductivity with \(2\Delta /k_{B}T_{c}\approx 4.1\) is mediated by the Einstein-like phonon mode of Y atoms located at \(\hbar \omega _{E}\approx 8\,\hbox {meV}\). We have investigated the pressure effect on \(\omega _{E}\) by Raman scattering up to 14 GPa. The received linear pressure increase in this mode \(d\omega _{E}/dp\approx \) 0.21 meV/GPa yields an isothermal Grüneisen coefficient \(\gamma _{T}= -\partial \hbox {ln}\omega _{E}/\partial \hbox {ln} V = 3.85\). Moreover, the pressure effect on the electron–phonon interaction \(\lambda \) calculated from the McMillan–Allen–Dynes expression for the superconducting transition temperature was determined to be \(\partial \hbox {ln}{\lambda }/\partial \hbox {ln}V \cong 7.2\).

Keywords

Superconductivity High pressures Raman scattering 

Notes

Acknowledgements

This work was supported by Projects VEGA 2/0032/16, APVV-14-0605, EU ERDF-ITMS 26110230097 and by CFNT MVEP project of the Slovak Academy of Sciences. Sponsorship of US Steel Kosice is appreciated too.

References

  1. 1.
    R. Lortz et al., Phys. Rev. B 73, 024512 (2006). doi: 10.1103/PhysRevB.73.024512 ADSCrossRefGoogle Scholar
  2. 2.
    Y. Xu et al., Phys. Rev. B 76, 214103 (2007). doi: 10.1103/PhysRevB.76.214103 ADSCrossRefGoogle Scholar
  3. 3.
    P. Szabó et al., Supercond. Sci. Technol. 26, 045019 (2013). doi: 10.1088/0953-2048/26/4/045019
  4. 4.
    R. Khasanov et al., Phys. Rev. Lett. 97, 157002 (2006). doi: 10.1103/PhysRevLett.97.157002 ADSCrossRefGoogle Scholar
  5. 5.
    S. Gabani et al., Phys. Rev. B 90, 045136 (2014). doi: 10.1103/PhysRevB.90.045136 ADSCrossRefGoogle Scholar
  6. 6.
    Yu.S. Ponosov, NYu. Shitsevalova, JETP Lett. 102, 295–300 (2015). doi: 10.1134/S0021364015170105
  7. 7.
    P.B. Allen, R.C. Dynes, Phys. Rev. B 12, 905 (1975). doi: 10.1103/PhysRevB.12.905 ADSCrossRefGoogle Scholar
  8. 8.
    S. Deemyad et al., Physica C 385, 105–116 (2003). doi: 10.1016/S0921-4534(02)02300-6 ADSCrossRefGoogle Scholar
  9. 9.
    X.J. Chen, H. Zhang, H.-U. Habermeier, Phys. Rev. B 65, 144514 (2002). doi: 10.1103/PhysRevB.65.144514 ADSCrossRefGoogle Scholar
  10. 10.
    Yu.S. Ponosov et al., JETP Lett. 102, 503–507 (2015). doi: 10.1134/S0021364015200114

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Mat. Orendáč
    • 1
    • 2
  • S. Gabáni
    • 1
    Email author
  • E. Gažo
    • 1
  • G. Pristáš
    • 1
  • K. Flachbart
    • 1
  • T. Mori
    • 3
  • X. Wang
    • 4
  • K. Kamenev
    • 4
  1. 1.Institute of Experimental PhysicsSASKosiceSlovakia
  2. 2.Institute of Physics, Faculty of ScienceP.J. Safarik UniversityKošiceSlovakia
  3. 3.MANANational Institute for Materials ScienceTsukubaJapan
  4. 4.Centre for Science at Extreme ConditionsUniversity of EdinburghEdinburghUK

Personalised recommendations