Advertisement

Journal of Low Temperature Physics

, Volume 186, Issue 3–4, pp 275–284 | Cite as

Analysis of Photonic Band Gaps in a Two-Dimensional Triangular Lattice with Superconducting Hollow Rods

  • B. F. Diaz-Valencia
  • J. M. CaleroEmail author
Article
  • 117 Downloads

Abstract

In this work, we use the plane wave expansion method to calculate photonic band structures in two-dimensional photonic crystals which consist of high-temperature superconducting hollow rods arranged in a triangular lattice. The variation of the photonic band structure with respect to both, the inner radius and the system temperature, is studied, taking into account temperatures below the critical temperature of the superconductor in the low frequencies regime and assuming E polarization of the incident light. Permittivity contrast and nontrivial geometry of the hollow rods lead to the appearance of new band gaps as compared with the case of solid cylinders. Such band gaps can be modulated by means of the inner radius and system temperature.

Keywords

Photonic crystal Photonic band gaps Photonic band structure Superconducting rods 

Notes

Acknowledgements

The authors are grateful to Professor Nelson Porras-Montenegro for a critical reading of the paper. This research was partially supported by Vicerrectoría de Investigaciones (research proyect CI71025), and CENM at Universidad del Valle. B.F. D-V acknowledges support from CIBioFi, and the Colombian Science, Technology and Innovation Fund-General Royalties System (Fondo CTeI- SGR) under contract No. BPIN 2013000100007.

References

  1. 1.
    E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987)ADSCrossRefGoogle Scholar
  2. 2.
    S. John, Phys. Rev. Lett. 58, 2486 (1987)ADSCrossRefGoogle Scholar
  3. 3.
    P. Bermel, C. Luo, L. Zeng, L.C. Kimerling, J.D. Joannopoulos, Opt. Express 15(25), 16986 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    C. Wiesmann, K. Bergenek, N. Linder, U.T. Schwarz, Laser Photon. Rev. 3, 262 (2009)CrossRefGoogle Scholar
  5. 5.
    Y. Fan, X. Wang, Pro. Eng. 29, 2332 (2012)CrossRefGoogle Scholar
  6. 6.
    F. Poletti, N.V. Wheeler, M.N. Petrovich, N. Baddela, E. Numkam, J.R. Hayes, D.R. Gray, Z. Li, R. Slavík, J. Richardson Nat. Photonics 7, 279 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    Y. Tanaka, Y. Kawamoto, M. Fujita, S. Noda, Opt. Express 21(17), 20111 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    M.M. Sigalas, C.T. Chan, K.M. Ho, C.M. Soukoulis, Phys. Rev. B 52, 11744 (1995)ADSCrossRefGoogle Scholar
  9. 9.
    V. Kuzmiak, A.A. Maradudin, F. Pincemin, Phys. Rev. B 50, 16835 (1994)ADSCrossRefGoogle Scholar
  10. 10.
    K. Sakoda, N. Kawai, T. Ito, A. Chutinan, S. Noda, T. Mitsuyu, K. Hirao, Phys. Rev. B 64, 045116 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    A. Pimenov, A. Loidl, Phys. Rev. Lett 96, 063903 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    S. Belousov, M. Bogdanova, A. Deinega, S. Eyderman, I. Valuev, Y. Lozovik, I. Polischuk, B. Potapkin, Phys. Rev. B 86, 174201 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    W.M. Lee, P.M. Hui, Phys. Rev. B 51, 8634 (1995)ADSCrossRefGoogle Scholar
  14. 14.
    A.N. Poddubny, E.L. Ivchenkoa, Y.E. Lozovik, Solid State Commun. 146, 143 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    C.H. Raymond Ooi, T.C. Au Yeung, C.H. Kam, T.K. Lim, Phys. Rev. B 61, 5920 (2000)ADSCrossRefGoogle Scholar
  16. 16.
    H. Takeda, K. Yoshino, Phys. Rev. B 67, 245109 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    H. Takeda, K. Yoshino, Phys. Rev. B 70, 085109 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    T. Peia, Y. Huang, J. Appl. Phys. 101, 084502 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    N.N. Dadoenkova, A.E. Zabolotin, I.L. Lyubchanskii, Y.P. Lee, Th Rasing, J. Appl. Phys. 108, 093117 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    C.H. Raymond, Q. Ooi, J. Appl. Phys. 110, 063513 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    W. Liu, F. Pan, L. Cai, Phys. C 500, 4 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    G.N. Pandeya, K.B. Thapa, S.P. Ojha, Optik 125, 252 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    J. Barvestani, Phys. B 457, 218 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    M. Zamani, Phys. C 520, 42 (2016)CrossRefGoogle Scholar
  25. 25.
    B. Dietz, T. Klaus, M. Miski-Oglu, A. Richter, Phys. Rev. B 91, 035411 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    T. Pana, F. Zhuang, Z. Li, Solid State Commun. 129, 501 (2004)ADSCrossRefGoogle Scholar
  27. 27.
    T. Trifonov, L.F. Marsal, A. Rodríguez, J. Pallarès, R. Alcubilla, Phys. Rev. B 70, 195108 (2004)ADSCrossRefGoogle Scholar
  28. 28.
    H. Xiao, D.Z. Yao, C.X. Wang, S. Chen, Eur. Phys. J. B 64, 219 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    C.A. Duque, N. Porras-Montenegro, S.B. Cavalcanti, L.E. Oliveira, J. Appl. Phys. 105, 034303 (2009)ADSCrossRefGoogle Scholar
  30. 30.
    D. Liu, H. Liu, Y. Gao, Solid State Commun. 172, 10 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    B.F. Diaz-Valencia, J.M. Calero, Phys. C 505, 74 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    P. Halevi, F. Ramos-Mendieta, Phys. Rev. Lett. 85, 1875 (2000)ADSCrossRefGoogle Scholar
  33. 33.
    H. Shibata, T. Yamada, Phys. Rev. B 54, 7500 (1996)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Departamento de FísicaUniversidad del Valle A.ACaliColombia
  2. 2.Centre for Bioinformatics and Photonics-CIBioFiCaliColombia

Personalised recommendations