Journal of Low Temperature Physics

, Volume 187, Issue 5–6, pp 531–537 | Cite as

Transition to Quantum Turbulence and Streamwise Inhomogeneity of Vortex Tangle in Thermal Counterflow

  • E. Varga
  • S. Babuin
  • V. S. L’vov
  • A. Pomyalov
  • L. Skrbek


We report preliminary results of the complementary experimental and numerical studies on spatiotemporal tangle development and streamwise vortex line density (VLD) distribution in counterflowing \(^4\)He. The experiment is set up in a long square channel with VLD and local temperature measured in three streamwise locations. In the steady state, we observe nearly streamwise-homogeneous VLD. Experimental second-sound data as well as numerical data (vortex filament method in a long planar channel starting with seeding vortices localized in multiple locations) show that the initial build-up pattern of VLD displays complex features depending on the position in the channel, but some tangle properties appear uniform along its length.


Superfluid \(^4\)He Quantum turbulence Thermal counterflow 



This work is supported by the Czech Science Foundation under project GAČR 203/14/02005S and by the European Community Framework Programme 7, EuHIT—European High-performance Infrastructures in Turbulence, Grant Agreement No. 312778.


  1. 1.
    W.F. Vinen, Proc. R. Soc. A 240, 114 (1957)ADSCrossRefGoogle Scholar
  2. 2.
    W.F. Vinen, Proc. R. Soc. A 240, 128 (1957)ADSCrossRefGoogle Scholar
  3. 3.
    W.F. Vinen, Proc. R. Soc. A 242, 493 (1957)ADSCrossRefGoogle Scholar
  4. 4.
    W.F. Vinen, Proc. R. Soc. A 243, 400 (1958)ADSCrossRefGoogle Scholar
  5. 5.
    K. Mendelssohn, W.A. Steele, Proc. Phys. Soc. 73, 144 (1959)ADSCrossRefGoogle Scholar
  6. 6.
    J. Castiglione, P.J. Murphy, J.T. Tough, F. Hayot, Y. Pomeau, J. Low Temp. Phys. 100, 575 (1995)ADSCrossRefGoogle Scholar
  7. 7.
    P.J. Murphy, J. Castiglione, J.T. Tough, J. Low Temp. Phys. 92, 307 (1993)ADSCrossRefGoogle Scholar
  8. 8.
    V.P. Peshkov, V.K. Tkachenko, JETP 14, 1019 (1962)Google Scholar
  9. 9.
    H. van Beelen, W. van Joolingen, K. Yamada, Phys. B 153, 248 (1988)ADSCrossRefGoogle Scholar
  10. 10.
    K.W. Schwarz, Phys. Rev. Lett. 64, 130 (1990)ADSGoogle Scholar
  11. 11.
    K.W. Schwarz, J.R. Rozen, Phys. Rev. B. 44, 7563 (1991)ADSCrossRefGoogle Scholar
  12. 12.
    J.A. Geurst, Phys. A 183, 279 (1992)CrossRefGoogle Scholar
  13. 13.
    S.K. Nemirovskii, W. Fiszdon, Rev. Mod. Phys. 67, 37 (1995)ADSCrossRefGoogle Scholar
  14. 14.
    S.K. Nemirovskii, J. Low Temp. Phys. 162, 347 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    S. Babuin, M. Stammeier, E. Varga, M. Rotter, L. Skrbek, Phys. Rev. B 86, 134515 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    G.W. Stagg, N.G. Parker, C.F. Barenghi. arXiv:1603.01165
  17. 17.
    K.W. Schwarz, Phys. Rev. B 38, 2398 (1988)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    D.C. Samuels, Phys. Rev. B 46, 11714 (1992)ADSCrossRefGoogle Scholar
  19. 19.
    L. Kondaurova, V.S. L’vov, A. Pomyalov, I. Procaccia, Phys. Rev. B 89, 014502 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    D. Khomenko, L. Kondaurova, V.S. L’vov, P. Mishra, A. Pomyalov, I. Procaccia, Phys. Rev. B 91, 180504(R) (2015)ADSCrossRefGoogle Scholar
  21. 21.
    H. Adachi, S. Fujiyama, M. Tsubota, Phys. Rev. B 81, 104511 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Faculty of Mathematics and PhysicsCharles UniversityPragueCzech Republic
  2. 2.Institute of Physics ASCRPragueCzech Republic
  3. 3.Department of Chemical PhysicsWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations