Journal of Low Temperature Physics

, Volume 187, Issue 5–6, pp 497–514 | Cite as

Statistics of Quantum Turbulence in Superfluid He

  • V. S. L’vov
  • A. Pomyalov


Based on our current understanding of statistics of quantum turbulence as well as on results of intensive ongoing analytical, numerical and experimental studies, we overview here the following problems in the large-scale, space-homogeneous, steady-state turbulence of superfluid \(^4\)He and \(^3\)He: (1) energy spectra of normal and superfluid velocity components; (2) cross-correlation function of normal and superfluid velocities; (3) energy dissipation by mutual friction and viscosity; (4) energy exchange between normal and superfluid components; (5) high-order statistics and intermittency effects. The statistical properties are discussed for turbulence in different types of flows: coflow of \(^4\)He; turbulent \(^3\)He with the laminar normal fluid; pure superflow and counterflow in \(^4\)He.


Energy spectra Intermittency Velocity decoupling 



We acknowledge L. Skrbek, E. Varga, W. Guo and J. Gao who provided us with their experimental results prior to publications and allowed to use them in preparing this review. Useful discussion with them and with J. Vinen, I. Procaccia, S. Nazarenko, G. Volovik, C. Barenghi, P-E Roche and other colleagues made this review possible.


  1. 1.
    R.P. Feynman, in Progress in Low Temperature Physics, vol. 1, Chap. 2, ed. C.J. Gorter (North-Holland, Amsterdam, 1955), pp. 17–53Google Scholar
  2. 2.
    W.F. Vinen, Mutual Friction in a Heat Current in Liquid Helium II. I. Experiments on Steady Heat Currents Proceedings of Royal Society A 240, 114–128 (1957);ibid emphMutual Friction in a Heat Current in Liquid Helium II. III. Theory of the Mutual Friction, 242, 489 (1957)Google Scholar
  3. 3.
    R.J. Donnelly, C.E. Swanson, Quantum turbulence. J. Fluid Mech. 173, 387 (1986)ADSCrossRefGoogle Scholar
  4. 4.
    W.F. Vinen, J.J. Niemela, Quantum turbulence. J. Low Temp. Phys. 128, 167 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    L. Skrbek, K.R. Sreenivasan, Developed quantum turbulence and its decay. Phys. Fluids 24, 011301 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    S.K. Nemirovskii, Quantum turbulence: theoretical and numerical problems. Phys. Rep. 524, 85 (2012)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    C.F. Barenghi, V.S. L’vov, P.-E. Roche, Turbulent velocity spectra in a quantum fluid: experiments, numerics and theory. Proc. Natl. Acad. Sci. 111, 4683 (2014)ADSCrossRefzbMATHGoogle Scholar
  8. 8.
    L. Boue, V.S. L’vov, A. Pomyalov, I. Procaccia, Enhancement of intermittency in superfluid turbulence. Phys. Rev. Lett. 110, 014502 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    V.S. L’vov, S.V. Nazarenko, G.E. Volovik, Energy spectra of developed superfluid turbulence. JETP Lett. 80, 479 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    L. Boue, V.S. L’vov, A. Pomyalov, I. Procaccia, Energy spectra of superfluid turbulence in 3He-B. Phys. Rev. B 85, 104502 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    S. Babuin, V.S. L’vov, A. Pomyalov, L. Skrbek, E. Varga, Coexistence and interplay of quantum and classical turbulence of superfluid He-4: decay, velocity decoupling and counterflow energy spectra. Phys. Rev. B (2016, in press)Google Scholar
  12. 12.
    A. Marakov, J. Gao, W. Guo, S.W. Van Sciver, G.G. Ihas, D.N. McKinsey, W.F. Vinen, Visualization of the normal-fluid turbulence in counterflowing superfluid \(^4\)He. Phys. Rev. B 91, 094503 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    J. Gao, E. Varga, W. Guo, W.F. Vinen, Statistical measurement of counterflow turbulence in superfluid Helium-4 using He-II tracer-line tracking technique. J. Low Temp. Phys. doi: 10.1007/s10909-016-1681-y
  14. 14.
    J. Gao, W. Guo, V.S. L’vov, A. Pomyalov, L. Skrbek, E. Varga, W.F. Vinen, The decay of counterflow turbulence in superfluid He-4. JETP Lett. 103, 732 (2016)CrossRefGoogle Scholar
  15. 15.
    J. Gao, W. Guo, V.S. L’vov, A. Pomyalov, Statistical analysis of the counterflow visualization data, unpublishedGoogle Scholar
  16. 16.
    U. Frisch, Turbulence. The Legacy of A.N. Kolmogorov (Cambridge University press, Cambridge, 1995)zbMATHGoogle Scholar
  17. 17.
    J. Salort, B. Chabaud, E. Lévéque, P.-E. Roche, Energy cascade and the four-fifths law in superfluid turbulence. Europhys. Lett. 97, 34006 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    L. Biferale, Shell models of energy cascade in turbulence. Ann. Rev. Fluid Mech. 35, 441 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    V.S. L’vov, E. Podivilov, A. Pomyalov, I. Procaccia, D. Vandembroucq, Improved shell model of turbulence. Phys. Rev. E 58, 1811 (1998)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    H.E. Hall, W.F. Vinen, in Proceedings of the Royal Society A. The Rotation of Liquid Helium II. I. Experiments on the Propagation of Second Sound in Uniformly Rotating Helium II, 238, 204 (1956)Google Scholar
  21. 21.
    I.L. Bekarevich, I.M. Khalatnikov, Phenomenological derivation of the equations of vortex motion in He II. Sov. Phys. JETP 13, 643 (1961)Google Scholar
  22. 22.
    S. Fuzier, B. Baudouy, S.N. Van Sciver, Cryogenics 41, 453 (2001)ADSCrossRefGoogle Scholar
  23. 23.
    L. Boue, V.S. L’vov, Y. Nagar, S.V. Nazarenko, A. Pomyalov, I. Procaccia, Energy and vorticity spectra in turbulent superfluid \(^4\)He from \(T = 0\) to \(T_\lambda \). Phys. Rev. B 91, 144501 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    D.H. Wacks, C.F. Barenghi, Shell model of superfludi turbulence. Phys. Rev. B 84, 184505 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    J. Salort, B. Chabaud, E. Lévéque, P.-E. Roche, Investigation of intermittency in superfluid turbulence. J. Phys. Conf. Ser. 318, 042014 (2011)CrossRefGoogle Scholar
  26. 26.
    J. Maurer, P. Tabeling, Local investigation of superfluid turbulence. Europhys. Lett. 43, 29 (1998)ADSCrossRefGoogle Scholar
  27. 27.
    V.S. L’vov, S.V. Nazarenko, L. Skrbek, Energy spectra of developed turbulence in helium superfluids. J. Low Temp. Phys. 145, 125 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    L. Kovasznay, Spectrum of locally isotropic turbulence. J. Aeronaut. Sci. 15, 745 (1947)MathSciNetCrossRefGoogle Scholar
  29. 29.
    D. Khomenko, V.S. L’vov, A. Pomyalov, I. Procaccia, Counterflow-induced decoupling in super-fluid turbulence. Phys. Rev. B 93, 014516 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    S. Babuin, E. Varga, W.F. Vinen, L. Skrbek, Quantum turbulence of bellows-driven He4 superflow: Decay. Phys. Rev. B 92, 184503 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Chemical PhysicsWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations