Journal of Low Temperature Physics

, Volume 185, Issue 3–4, pp 230–245 | Cite as

From Liquid Helium to Granular Materials

  • Robert P. Behringer


This article provides a brief history of work that I have either carried out with Horst Meyer, or that was connected in some way with experiences reaching back to the laboratory known as LTM for low temperature [physics] Meyer, at Duke University. It is not intended as a complete review of all relevant work, but rather to hit highlights. My work with Horst started with studies of critical phenomena in liquid helium. This system provided an extremely rich and diverse testing ground for then newly emerging theories of static and dynamic critical phenomena. A key aspect of the experimental work with Horst was high-precision measurements of temperature and pressure. The ability to measure thermal properties with exceptional precision was at the core of this work. It also provided a natural springboard for entirely different investigations of Rayleigh–Bénard convection, which had just been initiated by Guenter Ahlers. My postdoc with Guenter provided a whole new set of experiences involving convection, dynamical instabilities, and chaos, where again the special properties, measurement techniques, and creative approaches to research associated with liquid helium were critical. In fact, later, knowledge of these techniques allowed me to start a whole new research direction in granular materials, which is a primary focus of my current research.


Critical phenomena Liquid helium Rayleigh–Bénard convection Granular materials Force chains Jamming by shear 



The work described here has been supported by numerous grants and organizations, including currently NSF-DMR1206351, NASA NNX15AD38G, W.M. Keck Foundation, the Triangle MRSEC, NSF-DMS1248071, and recently by DTRA, IFPRI, and ARO. I particularly appreciate helpful comments by a reviewer.


  1. 1.
    H.E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Oxford University Press, Oxford, New York, 1971)Google Scholar
  2. 2.
    B. Widom, J. Chem. Phys. 43, 3898 (1965)ADSCrossRefGoogle Scholar
  3. 3.
    L. Kadanoff et al., Rev. Mod. Phys. 39, 395 (1967)ADSCrossRefGoogle Scholar
  4. 4.
    M. Fisher, Rep. Prog. Phys. 30, 615 (1967)ADSCrossRefGoogle Scholar
  5. 5.
    K.G. Wilson, Phys. Rev. B4, 3174–3184 (1971)ADSCrossRefGoogle Scholar
  6. 6.
    E.K. Riedel, Phys. Rev. Lett. 28, 675 (1972)ADSCrossRefGoogle Scholar
  7. 7.
    G. Goellner, R. Behringer, H. Meyer, J. Low Temp. Phys. 13, 113 (1973)ADSCrossRefGoogle Scholar
  8. 8.
    E.K. Riedel, H. Meyer, R.P. Behringer, J. Low Temp. Phys. 22, 369 (1976)ADSCrossRefGoogle Scholar
  9. 9.
    R.B. Griffiths, Phys. Rev. Lett. 24, 715 (1970)ADSCrossRefGoogle Scholar
  10. 10.
    G. Ahlers, Experiments near the superfluid transition in \(^4\)He and \(^3\)He–\(^4\)He mixtures, in The Physics of Liquid and Solid Helium, Part I, ed. by K.H. Bennemann, J.B. Ketterson (Wiley, New York, 1976)Google Scholar
  11. 11.
    H.B. Callen, Thermodynamics and an Introduction to Thermostatistics (Wiley, New York, 1985)zbMATHGoogle Scholar
  12. 12.
    Robert P. Behringer, Ted Doiron, Horst Meyer, Equation of state of \(^3He\) near its liquid–vapor critical point. J. Low Temp. Phys. 24, 315 (1976)ADSCrossRefGoogle Scholar
  13. 13.
    H.A. Kierstead, Phys. Rev. A 7, 242 (1973)ADSCrossRefGoogle Scholar
  14. 14.
    T. Doiron, R.P. Behringer, H. Meyer, J. Low Temp. Phys. 24, 345 (1976)ADSCrossRefGoogle Scholar
  15. 15.
    G. Ahlers, Phys. Rev. Lett. 33, 1185 (1974)ADSCrossRefGoogle Scholar
  16. 16.
    M.C. Cross, P.C. Hohenberg, Rev. Mod. Phys. 65, 851 (1993)ADSCrossRefGoogle Scholar
  17. 17.
    R.P. Behringer, Rev. Mod. Phys. 57, 657–687 (1985)ADSCrossRefGoogle Scholar
  18. 18.
    J.P. Gollub, H.L. Swinney, Phys. Rev. Lett. 35, 927 (1975)ADSCrossRefGoogle Scholar
  19. 19.
    C.D. Anderek, S.S. Liu, H.L. Swinney, J. Fluid Mech. 164, 155 (1986)ADSCrossRefGoogle Scholar
  20. 20.
    R.J. Donnelly, Phys. Today 44, 32–39 (1991)CrossRefGoogle Scholar
  21. 21.
    Guenter Ahlers, R.P. Behringer, Phys. Rev. Lett. 40, 712 (1978)ADSCrossRefGoogle Scholar
  22. 22.
    A. Libchabe, J. Maurer, J. Phys. Colloq. 41–C3, 51 (1980)Google Scholar
  23. 23.
    J.P. Gollub, J.F. Steinman, Phys. Rev. Lett. 47, 505 (1981)ADSCrossRefGoogle Scholar
  24. 24.
    R.P. Behringer, G. Ahlers, J. Fluid Mech. 125, 219 (1982)ADSCrossRefGoogle Scholar
  25. 25.
    R.P. Behringer, G. Ahlers, Phys. Lett. 62A, 329 (1977)ADSCrossRefGoogle Scholar
  26. 26.
    H. Steven, Strogatz, Nonlinear Dynamics and Chaos, 2nd edn. (Westview Press, Boulder, 2015)Google Scholar
  27. 27.
    R.P. Behringer, H. Gao, J.N. Shaumeyer, Phys. Rev. Lett. 50, 1199 (1983)ADSCrossRefGoogle Scholar
  28. 28.
    V. Croquette, M. Mory, F. Scholssler, J. Phys. 44, 293 (1983)CrossRefGoogle Scholar
  29. 29.
    R.W. Walden, G. Ahlers, Phys. Rev. A 27, 1255 (1983)ADSCrossRefGoogle Scholar
  30. 30.
    C.W. Meyer, D.S. Cannell, G. Ahlers, J.B. Swift, P.C. Hohenberg, Phys. Rev. Lett. 61, 947 (1988)ADSCrossRefGoogle Scholar
  31. 31.
    L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Pergamon Press, Oxford, 1959)zbMATHGoogle Scholar
  32. 32.
    G. Ruppeiner, H. Meyer, Phys. Lett. 70A, 433 (1979)ADSCrossRefGoogle Scholar
  33. 33.
    R.P. Behringer, H. Meyer, J. Low Temp. Phys. 46, 407 (1982)ADSCrossRefGoogle Scholar
  34. 34.
    R.P. Behringer, J. Low Temp. Phys. 62, 15 (1986)ADSCrossRefGoogle Scholar
  35. 35.
    R.P. Behringer, J. Low Temp. Phys. 81, 1 (1990)ADSCrossRefGoogle Scholar
  36. 36.
    M. Tanaka, A. Ikushima, K. Kaswasaki, Phys. Lett. 61A, 119 (1977)ADSCrossRefGoogle Scholar
  37. 37.
    D. Gestrich, M. Dingus, H. Meyer, Phys. Lett. 99A, 331 (1983)ADSCrossRefGoogle Scholar
  38. 38.
    M. Dingus, F. Zhong, H. Meyer, Phys. Rev. Lett. 54, 2347 (1985)ADSCrossRefGoogle Scholar
  39. 39.
    R.P. Behringer, A. Onuki, H. Meyer, J. Low Temp. Phys. 81, 71 (1990)ADSCrossRefGoogle Scholar
  40. 40.
    A. Onuki, H. Hao, R.A. Ferrell, Phys. Rev. A 41, 2256 (1990)ADSCrossRefGoogle Scholar
  41. 41.
    A. Onuki, R.A. Ferrell, Phys. A 164, 245 (1990)CrossRefGoogle Scholar
  42. 42.
    B. Zapploi, D. Baily, Y. Garrabos, B. Le Neindre, P. Guenon, D. Beysens, Phys. Rev. A 41, 2264 (1990)ADSCrossRefGoogle Scholar
  43. 43.
    H. Boukari, J.N. Shaumeyer, N.E. Briggs, R.W. Gammon, Phys. Rev. A 41, 2260 (1990)ADSCrossRefGoogle Scholar
  44. 44.
    J.S. Olafsen, R.P. Behringer, J. Low Temp. Phys. 106, 673 (1997)ADSCrossRefGoogle Scholar
  45. 45.
    J.S. Olafsen, R.P. Behringer, J. Low Temp. Phys. 111, 863 (1998)ADSCrossRefGoogle Scholar
  46. 46.
    D.G. Schaeffer, J. Differ. Equ. 66, 19 (1987)ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    E.B. Pitman, D.G. Schaeffer, Commun. Pure Appl. Math. 40, 421 (1987)MathSciNetCrossRefGoogle Scholar
  48. 48.
    R.M. Nedderman, Statics and Kinematics of Granular Materials (Cambridge University Press, Cambridge, 1992)CrossRefGoogle Scholar
  49. 49.
    G.W. Baxter, R.P. Behringer, T. Fagert, G.A. Johnson, Pattern formation and time-dependence in granular flows, in Two Phase Flows and Waves, ed. by D.D. Joseph, D.G. Schaeffer (Springer, New York, 1990)Google Scholar
  50. 50.
    G.W. Baxter, R. Leone, R.P. Behringer, Europhys. Lett. 21, 569 (1993)ADSCrossRefGoogle Scholar
  51. 51.
    H.M. Jaeger, S.R. Nagel, R.P. Behringer, Rev. Mod. Phys. 68, 1259 (1996)ADSCrossRefGoogle Scholar
  52. 52.
    T.S. Majmudar, R.P. Behringer, Nature 435, 1079–1082 (2005)ADSCrossRefGoogle Scholar
  53. 53.
    T.S. Majmudar, M. Sperl, S. Luding, R.P. Behringer, Phys. Rev. Lett. 98, 058001 (2007)ADSCrossRefGoogle Scholar
  54. 54.
    Dapeng Bi, Jie Zhang, Bulbul Chakraborty, R.P. Behringer, Nature 480, 355–358 (2011)ADSCrossRefGoogle Scholar
  55. 55.
    J. Ren, J.A. Dijksman, R.P. Behringer, Phys. Rev. Lett. 110, 018302 (2013)ADSCrossRefGoogle Scholar
  56. 56.
    C.S. O’Hern, Computational methods, in Handbook of Granular Materials, ed. by S.V. Franklin, M.D. Shattuck (CRC Press, Boca Raton, 2016)Google Scholar
  57. 57.
    F. Radjai, M. Jean, J.-J. Moreau, S. Roux, Phys. Rev. Lett. 96, 274 (1996)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Physics and Center for Nonlinear and Complex SystemsDuke UniversityDurhamUSA

Personalised recommendations