Journal of Low Temperature Physics

, Volume 185, Issue 3–4, pp 339–353 | Cite as

The Helium Field Effect Transistor (II): Gated Transport of Surface-State Electrons Through Micro-constrictions

  • F. Shaban
  • M. Ashari
  • T. Lorenz
  • R. Rau
  • E. Scheer
  • K. Kono
  • D. G. Rees
  • P. Leiderer
Article
  • 193 Downloads

Abstract

We present transport measurements of surface-state electrons on liquid helium films in confined geometry. The measurements are taken using split-gate devices similar to a field effect transistor. The number of electrons passing between the source and drain areas of the device can be precisely controlled by changing the length of the voltage pulse applied to the gate electrode. We find evidence that the effective driving potential depends on electron–electron interactions, as well as the electric field applied to the substrate. Our measurements indicate that the mobility of electrons on helium films can be high and that microfabricated transistor devices allow electron manipulation on length scales close to the interelectron separation. Our experiment is an important step toward investigations of surface-state electron properties at much higher densities, for which the quantum melting of the system to a degenerate Fermi gas should be observed.

Keywords

Helium field effect transistor Surface electrons Helium film Electron transport Confined geometry 

Notes

Acknowledgments

It is a pleasure to dedicate this work to Horst Meyer on the occasion of his 90th birthday. One of us (P.L.) has the privilege of knowing Horst for more than four decades and has profited tremendously from many illuminating discussions on various aspects of quantum fluids and solids. We thank V. B. Shikin for useful correspondence and Louis Kukk for technical help. M. A. gratefully acknowledges the support by DAAD, and F. S. a scholarship by the University of Khartoum.

References

  1. 1.
    E. Andrei, Two-Dimensional Electron Systems on Helium and Other Cryogenic Substrates (Kluwer Academic, Dordrecht, 1997)CrossRefGoogle Scholar
  2. 2.
    C.C. Grimes, G. Adams, Phys. Rev. Lett. 36, 145 (1976)ADSCrossRefGoogle Scholar
  3. 3.
    K. Shirahama, S. Ito, H. Suto, K. Kono, J. Low Temp. Phys. 101, 433 (1995)ADSCrossRefGoogle Scholar
  4. 4.
    P. Leiderer, E. Scheer, K. Kono, J.-J. Lin, D.G. Rees, J. Low Temp. Phys. (2015). doi: 10.1007/s10909-015-1377-8 Google Scholar
  5. 5.
    P.M. Platzman, M.I. Dykman, Science 284, 5422 (1999)CrossRefGoogle Scholar
  6. 6.
    D.I. Schuster, A. Fragner, M.I. Dykman, S.A. Lyon, R.J. Schoelkopf, Phys. Rev. Lett. 105, 40503 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    D.G. Rees, I. Kuroda, C.A. Marrache-Kikuchi, M. Höfer, P. Leiderer, K. Kono, Phys. Rev. Lett. 106, 026803 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    H. Ikegami, H. Akimoto, D.G. Rees, K. Kono, Phys. Rev. Lett. 109, 236802 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    M. Takita, C.S. Nichols, S. Lyon, Bull. Am. Phys. Soc. 60(1), (2015). http://meetings.aps.org/link/BAPS.2015.MAR.Q37.11
  10. 10.
    P. Glasson, V. Dotsenko, P. Fozooni, M.J. Lea, W. Bailey, G. Papageorgiou, S.E. Andresen, A. Kristensen, Phys. Rev. Lett. 87, 176802 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    H. Ikegami, H. Akimoto, K. Kono, Phys. Rev. Lett. 102, 046807 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    J. Klier, I. Doicescu, P. Leiderer, J. Low Temp. Phys. 121, 603 (2000)ADSCrossRefGoogle Scholar
  13. 13.
    M. Ashari, D.G. Rees, K. Kono, E. Scheer, P. Leiderer, J. Low Temp. Phys. 167, 15 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    F. Shaban, T. Lorenz, R. Rau, M. Ashari, D. Rees, K. Kono, E. Scheer, P. Leiderer, J. Phys. Conf. Ser. 568, 012008 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    V. Shikin, J. Klier, I. Doicescu, A. Würl, P. Leiderer, Phys. Rev. B 64, 073401 (2001)ADSCrossRefGoogle Scholar
  16. 16.
    X.L. Hu, Y. Carmi, A.J. Dahm, J. Low Temp. Phys. 89, 625 (1992)ADSCrossRefGoogle Scholar
  17. 17.
    E.Y. Andrei, Phys. Rev. Lett. 52, 1449 (1984)ADSCrossRefGoogle Scholar
  18. 18.
    H.W. Jiang, M.A. Stan, A.J. Dahm, Surf. Sci. 196, 1 (1988)ADSCrossRefGoogle Scholar
  19. 19.
    C. Kreuter, U. Siems, P. Henseler, P. Nielaba, P. Leiderer, A. Erbe, J. Phys. Condens. Matter 24, 464120 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    G. Mistura, T. Günzler, S. Neser, P. Leiderer, Phys. Rev. B 56, 8360 (1997)ADSCrossRefGoogle Scholar
  21. 21.
    M. Köppl, P. Henseler, A. Erbe, P. Nielaba, P. Leiderer, Phys. Rev. Lett. 97, 208302 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    U. Siems, C. Kreuter, A. Erbe, N. Schwierz, S. Sengupty, P. Leiderer, P. Nielaba, Sci. Rep. 2, 1015 (2013)Google Scholar
  23. 23.
    G. Piacente, I.V. Schweigert, J.J. Betouras, F.M. Peeters, Phys. Rev. B 69, 045324 (2004)ADSCrossRefGoogle Scholar
  24. 24.
    T. Günzler, B. Bitnar, G. Mistura, S. Neser, P. Leiderer, Surf. Sci. 361/362, 831 (1996)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • F. Shaban
    • 1
  • M. Ashari
    • 1
  • T. Lorenz
    • 1
  • R. Rau
    • 1
  • E. Scheer
    • 1
  • K. Kono
    • 2
  • D. G. Rees
    • 3
  • P. Leiderer
    • 1
  1. 1.Department of PhysicsUniversity of KonstanzConstanceGermany
  2. 2.RIKENTokyoJapan
  3. 3.NCTUHsinchu CityTaiwan

Personalised recommendations