Journal of Low Temperature Physics

, Volume 184, Issue 5–6, pp 1015–1029 | Cite as

Finite-Size Bath in Qubit Thermodynamics

Article

Abstract

We discuss a qubit weakly coupled to a finite-size heat bath (calorimeter) from the point of view of quantum thermodynamics. The energy deposited to this environment together with the state of the qubit provides a basis to analyze the heat and work statistics of this closed combined system. We present results on two representative models, where the bath is composed of two-level systems or harmonic oscillators, respectively. Finally, we derive results for an open quantum system composed of the above qubit plus finite-size bath, but now the latter is coupled to a practically infinite bath of the same nature of oscillators or two-level systems.

Keywords

Calorimetry Open quantum systems Quantum thermodynamics Finite-size bath 

References

  1. 1.
    C. Jarzynski, Nat. Phys. 11, 105 (2015)CrossRefGoogle Scholar
  2. 2.
    J.P. Pekola, P. Solinas, A. Shnirman, D.V. Averin, N. J. Phys. 15, 115006 (2013)CrossRefGoogle Scholar
  3. 3.
    G. Crooks, Phys. Rev. E 60, 2721 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997)ADSCrossRefGoogle Scholar
  5. 5.
    C. Jarzynski, Phys. Rev. E 56, 5018 (1997)ADSCrossRefGoogle Scholar
  6. 6.
    P.W. Anderson, B.I. Halperin, C. Varma, Philos. Mag. 25, 1 (1972)ADSCrossRefGoogle Scholar
  7. 7.
    W.A. Phillips, J. Low Temp. Phys. 7, 351 (1972)ADSCrossRefGoogle Scholar
  8. 8.
    E. Paladino, Y.M. Galperin, G. Falci, B.L. Altshuler, Rev. Mod. Phys. 86, 361 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    J. Bergli, Y.M. Galperin, B.L. Altshuler, N. J. Phys. 11, 025002 (2009)CrossRefGoogle Scholar
  10. 10.
    J. Joffrin, A. Levelut, J. Phys. (Paris) 36, 811 (1975)CrossRefGoogle Scholar
  11. 11.
    J.L. Black, B.I. Halperin, Phys. Rev. B 16, 2879 (1977)ADSCrossRefGoogle Scholar
  12. 12.
    B.D. Laikhtman, Phys. Rev. B 31, 490 (1985)ADSCrossRefGoogle Scholar
  13. 13.
    R.W. Simmonds, K.M. Lang, D.A. Hite, S. Nam, D.P. Pappas, J.M. Martinis, Phys. Rev. Lett. 93, 077003 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    Y.M. Galperin, D.V. Shantsev, J. Bergli, B.L. Altshuler, Europhys. Lett. 71, 21 (2005)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    J. Lisenfeld, C. Müller, J.H. Cole, P. Bushev, A. Lukashenko, A. Shnirman, A.V. Ustinov, Phys. Rev. Lett. 105, 230504 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    G.J. Grabovskij, T. Peichl, J. Lisenfeld, G. Weiss, A.V. Ustinov, Science 338, 232 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    J. Lisenfeld, G.J. Grabovskij, C. Müller, J.H. Cole, G. Weiss, A.V. Ustinov, Nat. Commun. 6, 6182 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    F. Bloch, Phys. Rev. 105, 1206 (1957)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    A.G. Redfield, IBM J. Res. Dev. 1, 19 (1957)CrossRefGoogle Scholar
  20. 20.
    A. Shnirman, G. Schön, I. Martin, Y. Makhlin, Phys. Rev. Lett. 94, 127002 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    A.A. Abrikosov, Physics 2, 21 (1965)Google Scholar
  22. 22.
    A. A. Abrikosov, Zh. Eksp Teor. Fiz. 53, 1078 (1967) [Sov. Phys. JETP 26, 641 (1968)]Google Scholar
  23. 23.
    S. V. Maleev, Zh. Eksp Teor. Fiz. 79, 1995 (1980) [Sov. Phys. JETP 52, 1008 (1980)]Google Scholar
  24. 24.
    S. V. Maleev, Zh. Eksp Teor. Fiz. 84, 260 (1983) [Sov. Phys. JETP 57, 149 (1983)]Google Scholar
  25. 25.
    Y. M. Galperin, V. L. Gurevich, and D. A. Parshin, Zh. Eksp. Teor. Fiz. 87, 2178 (1984) [Sov. Phys. JETP 60 1259 (1984)]Google Scholar
  26. 26.
    C.P. Slichter, Principles of Magnetic Resonance (Springer, Berlin, 1990)CrossRefGoogle Scholar
  27. 27.
    S. Suomela, A. Kutvonen, and T. Ala-Nissila, arXiv:1601.05317
  28. 28.
    J. Dalibard, Y. Castin, K. Mølmer, Phys. Rev. Lett. 68, 580 (1992)ADSCrossRefGoogle Scholar
  29. 29.
    F.W.J. Hekking, J.P. Pekola, Phys. Rev. Lett. 111, 093602 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    J.P. Pekola, Y. Masuyama, Y. Nakamura, J. Bergli, Y.M. Galperin, Phys. Rev. E 91, 062109 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    J. Kurchan, e-print cond-mat/0007360Google Scholar
  32. 32.
    D. Andrieux, P. Gaspard, T. Monnai, S. Tasaki, N. J. Phys. 11, 043014 (2009)CrossRefGoogle Scholar
  33. 33.
    S. Gasparinetti, K.L. Viisanen, O.-P. Saira, T. Faivre, M. Arzeo, M. Meschke, J.P. Pekola, Phys. Rev. Appl. 3, 014007 (2015)ADSCrossRefGoogle Scholar
  34. 34.
    K.L. Viisanen, S. Suomela, S. Gasparinetti, O.-P. Saira, J. Ankerhold, J.P. Pekola, N. J. Phys. 17, 055014 (2015)CrossRefGoogle Scholar
  35. 35.
    J. Govenius, R. E. Lake, K. Y. Tan, M. Möttönen, arXiv:1512.07235

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Low Temperature Laboratory, Department of Applied PhysicsAalto University School of ScienceAaltoFinland
  2. 2.Department of Applied Physics and COMP Center of ExcellenceAalto University School of ScienceAaltoFinland
  3. 3.Physics DepartmentUniversity of OsloOsloNorway
  4. 4.A. F. Ioffe Physico-Technical Institute RASSt. PetersburgRussian Federation

Personalised recommendations