Advertisement

Journal of Low Temperature Physics

, Volume 184, Issue 3–4, pp 634–641 | Cite as

Advanced ACTPol Multichroic Polarimeter Array Fabrication Process for 150 mm Wafers

  • S. M. DuffEmail author
  • J. Austermann
  • J. A. Beall
  • D. Becker
  • R. Datta
  • P. A. Gallardo
  • S. W. Henderson
  • G. C. Hilton
  • S. P. Ho
  • J. Hubmayr
  • B. J. Koopman
  • D. Li
  • J. McMahon
  • F. Nati
  • M. D. Niemack
  • C. G. Pappas
  • M. Salatino
  • B. L. Schmitt
  • S. M. Simon
  • S. T. Staggs
  • J. R. Stevens
  • J. Van Lanen
  • E. M. Vavagiakis
  • J. T. Ward
  • E. J. Wollack
Article

Abstract

Advanced ACTPol (AdvACT) is a third-generation cosmic microwave background receiver to be deployed in 2016 on the Atacama Cosmology Telescope (ACT). Spanning five frequency bands from 25 to 280 GHz and having just over 5600 transition-edge sensor (TES) bolometers, this receiver will exhibit increased sensitivity and mapping speed compared to previously fielded ACT instruments. This paper presents the fabrication processes developed by NIST to scale to large arrays of feedhorn-coupled multichroic AlMn-based TES polarimeters on 150-mm diameter wafers. In addition to describing the streamlined fabrication process which enables high yields of densely packed detectors across larger wafers, we report the details of process improvements for sensor (AlMn) and insulator (SiN\(_x\)) materials and microwave structures, and the resulting performance improvements.

Keywords

AlMn Multichroic Polarimeter SiN\(_x\) Transition-edge sensor 

Notes

Acknowledgments

This work was supported by the U.S. National Science Foundation through award 1440226. The NIST authors would like to acknowledge the support of the NIST Quantum Initiative. The development of multichroic detectors and lenses was supported by NASA grants NNX13AE56G and NNX14AB58G. The work of BJK, BLS, JTW, and SMS was supported by NASA Space Technology Research Fellowship awards.

References

  1. 1.
    U. Seljak, M. Zaldarriaga, Phys. Rev. Lett. 78(11), 2054 (1997). doi: 10.1103/PhysRevLett.78.2054 ADSCrossRefGoogle Scholar
  2. 2.
    K.N. Abazajian et al., Astropart. Phys. 63, 66 (2015). doi: 10.1016/j.astropartphys.2014.05.014 ADSCrossRefGoogle Scholar
  3. 3.
    P.A.R. Ade et al., Phys. Rev. Lett. 112(24), 241101 (2014). doi: 10.1103/PhysRevLett.112.241101 ADSCrossRefGoogle Scholar
  4. 4.
    D. Hanson et al., Phys. Rev. Lett. 111(14), 141301 (2013). doi: 10.1103/PhysRevLett.111.141301 ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    P.A.R. Ade et al., Astrophys. J. 794(2), 171 (2014). doi: 10.1088/0004-637X/794/2/171 ADSCrossRefGoogle Scholar
  6. 6.
    A. van Engelen et al., Astrophys. J. 808(1), 7 (2015). doi: 10.1088/0004-637X/808/1/7 ADSCrossRefGoogle Scholar
  7. 7.
    R. Datta et al., J. Low Temp. Phys. 176, 5–6, 670 (2014), ISSN 0022-2291. doi: 10.1007/s10909-014-1134-4
  8. 8.
    J. Hubmayr et al., in Proceedings of 26th ISSTT (2015)Google Scholar
  9. 9.
    R. Datta et al., J. Low Temp. Phys., this Special Issue LTD16. doi: 10.1007/s10909-016-1553-5
  10. 10.
    S.P. Ho et al., J. Low Temp. Phys., this Special Issue LTD16. doi: 10.1007/s10909-016-1573-1
  11. 11.
    S.W. Henderson et al., J. Low Temp. Phys., this Special Issue LTD16. doi: 10.1007/s10909-016-1575-z
  12. 12.
    J. McMahon et al., J. Low Temp. Phys. 167, 5–6, 879 (2012), ISSN 0022-2291. doi: 10.1007/s10909-012-0612-9
  13. 13.
    D. Li et al., J. Low Temp. Phys., this Special Issue LTD16 (2015). doi: 10.1007/s10909-016-1526-8
  14. 14.
    D.R. Schmidt et al., IEEE Trans. Appl. Supercond. 21(3), 196 (2011). doi: 10.1109/TASC.2010.2090313 ADSCrossRefGoogle Scholar
  15. 15.
    G.C. ONeil et al., J. Appl. Phys. 107(9), 093903 (2010). doi: 10.1063/1.3369280
  16. 16.
    J.M. Martinis et al., Nucl. Instrum. Meth. Phys. Res. 444(1–2), 23 (2000). doi: 10.1016/S0168-9002(99)01320-0 ADSCrossRefGoogle Scholar
  17. 17.
    D. Li et al., IEEE Trans. Appl. Supercond. 23(3), 1501204 (2013). doi: 10.1109/TASC.2013.2242951 CrossRefGoogle Scholar
  18. 18.
    J. Gao et al., in Proceedings of AIP Conference 1185, 164–167 (2009). doi: 10.1063/1.3292306
  19. 19.
    C.M. Posada et al., Supercond. Sci. Technol. 28(9), 094002 (2015). doi: 10.1088/0953-2048/28/9/094002 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York (outside the USA) 2016

Authors and Affiliations

  • S. M. Duff
    • 1
    Email author
  • J. Austermann
    • 1
  • J. A. Beall
    • 1
  • D. Becker
    • 1
  • R. Datta
    • 2
  • P. A. Gallardo
    • 3
  • S. W. Henderson
    • 3
  • G. C. Hilton
    • 1
  • S. P. Ho
    • 4
  • J. Hubmayr
    • 1
  • B. J. Koopman
    • 3
  • D. Li
    • 5
  • J. McMahon
    • 2
  • F. Nati
    • 6
  • M. D. Niemack
    • 3
  • C. G. Pappas
    • 4
  • M. Salatino
    • 4
  • B. L. Schmitt
    • 6
  • S. M. Simon
    • 4
  • S. T. Staggs
    • 4
  • J. R. Stevens
    • 3
  • J. Van Lanen
    • 1
  • E. M. Vavagiakis
    • 3
  • J. T. Ward
    • 6
  • E. J. Wollack
    • 7
  1. 1.National Institute of Standards and TechnologyBoulderUSA
  2. 2.Department of PhysicsUniversity of MichiganAnn ArborUSA
  3. 3.Department of PhysicsCornell UniversityIthacaUSA
  4. 4.Department of Astrophysical SciencesPrinceton UniversityPrincetonUSA
  5. 5.SLAC National Accelerator LaboratoryMenlo ParkUSA
  6. 6.Department of Physics and AstronomyUniversity of PennsylvaniaPhiladelphiaUSA
  7. 7.NASA Goddard Space Flight CenterGreenbeltUSA

Personalised recommendations