Advertisement

Journal of Low Temperature Physics

, Volume 184, Issue 3–4, pp 772–779 | Cite as

Advanced ACTPol Cryogenic Detector Arrays and Readout

  • S. W. HendersonEmail author
  • R. Allison
  • J. Austermann
  • T. Baildon
  • N. Battaglia
  • J. A. Beall
  • D. Becker
  • F. De Bernardis
  • J. R. Bond
  • E. Calabrese
  • S. K. Choi
  • K. P. Coughlin
  • K. T. Crowley
  • R. Datta
  • M. J. Devlin
  • S. M. Duff
  • J. Dunkley
  • R. Dünner
  • A. van Engelen
  • P. A. Gallardo
  • E. Grace
  • M. Hasselfield
  • F. Hills
  • G. C. Hilton
  • A. D. Hincks
  • R. Hloẑek
  • S. P. Ho
  • J. Hubmayr
  • K. Huffenberger
  • J. P. Hughes
  • K. D. Irwin
  • B. J. Koopman
  • A. B. Kosowsky
  • D. Li
  • J. McMahon
  • C. Munson
  • F. Nati
  • L. Newburgh
  • M. D. Niemack
  • P. Niraula
  • L. A. Page
  • C. G. Pappas
  • M. Salatino
  • A. Schillaci
  • B. L. Schmitt
  • N. Sehgal
  • B. D. Sherwin
  • J. L. Sievers
  • S. M. Simon
  • D. N. Spergel
  • S. T. Staggs
  • J. R. Stevens
  • R. Thornton
  • J. Van Lanen
  • E. M. Vavagiakis
  • J. T. Ward
  • E. J. Wollack
Article

Abstract

Advanced ACTPol is a polarization-sensitive upgrade for the 6 m aperture Atacama Cosmology Telescope, adding new frequencies and increasing sensitivity over the previous ACTPol receiver. In 2016, Advanced ACTPol will begin to map approximately half the sky in five frequency bands (28–230 GHz). Its maps of primary and secondary cosmic microwave background anisotropies—imaged in intensity and polarization at few arcminute-scale resolution—will enable precision cosmological constraints and also a wide array of cross-correlation science that probes the expansion history of the universe and the growth of structure via gravitational collapse. To accomplish these scientific goals, the Advanced ACTPol receiver will be a significant upgrade to the ACTPol receiver, including four new multichroic arrays of cryogenic, feedhorn-coupled AlMn transition edge sensor polarimeters (fabricated on 150 mm diameter wafers); a system of continuously rotating meta-material silicon half-wave plates; and a new multiplexing readout architecture which uses superconducting quantum interference devices and time division to achieve a 64-row multiplexing factor. Here we present the status and scientific goals of the Advanced ACTPol instrument, emphasizing the design and implementation of the Advanced ACTPol cryogenic detector arrays.

Keywords

Bolometers Cosmic microwave background Millimeter-wave Polarimetry Superconducting detectors Transition edge sensors 

Notes

Acknowledgments

This work was supported by the U.S. National Science Foundation through Awards 1312380 and 1440226. The NIST authors would like to acknowledge the support of the NIST Quantum Initiative. The development of multichroic detectors and lenses was supported by NASA Grants NNX13AE56G and NNX14AB58G. The work of KPC, KTC, EG, BJK, CM, BLS, JTW, and SMS was supported by NASA Space Technology Research Fellowship awards.

References

  1. 1.
    M.D. Niemack et al., Proc. SPIE 7741, 77411S (2010)CrossRefGoogle Scholar
  2. 2.
    P.A.R. Ade et al., Astrophys. J. 792, 62 (2014). doi: 10.1088/0004-637X/792/1/62 ADSCrossRefGoogle Scholar
  3. 3.
    Z. Staniszewski et al., J. Low Temp. Phys. 167, 827 (2012). doi: 10.1007/s10909-012-0510-1 ADSCrossRefGoogle Scholar
  4. 4.
    K. Arnold et al., Proc. SPIE 7741, 77411E (2010)CrossRefGoogle Scholar
  5. 5.
    J.E. Austermann et al., Proc. SPIE 8452, 84521E (2012)CrossRefGoogle Scholar
  6. 6.
    W. Grainger et al., Proc. SPIE 7020, 70202N (2008)CrossRefGoogle Scholar
  7. 7.
    A. Fraisse et al., JCAP 2013(04), 047 (2013). doi: 10.1088/1475-7516/2013/04/047 CrossRefGoogle Scholar
  8. 8.
    J.A. Tauber et al., A&A 520, A1 (2010). doi: 10.1051/0004-6361/200912983 ADSCrossRefGoogle Scholar
  9. 9.
    T. Essinger-Hileman et al., Proc. SPIE 9153, 91531I (2014)CrossRefGoogle Scholar
  10. 10.
    S. Galli et al., Phys. Rev. D 90, 063504 (2014). doi: 10.1103/PhysRevD.90.063504 ADSCrossRefGoogle Scholar
  11. 11.
    E. Calabrese et al., JCAP 2014(08), 010 (2014). doi: 10.1088/1475-7516/2014/08/010 CrossRefGoogle Scholar
  12. 12.
    D. Hanson et al., Phys. Rev. Lett. 111, 141301 (2013). doi: 10.1103/PhysRevLett.111.141301
  13. 13.
    P.A.R. Ade et al., Phys. Rev. Lett. 112, 241101 (2014). doi: 10.1103/PhysRevLett.112.241101
  14. 14.
    S. Naess et al., JCAP 10, 007 (2014). doi: 10.1088/1475-7516/2014/10/007 ADSCrossRefGoogle Scholar
  15. 15.
    M. Madhavacheril et al., Phys. Rev. Lett. 114, 151302 (2015). doi: 10.1103/PhysRevLett.114.151302
  16. 16.
    R. Allison et al., MNRAS 451, 849 (2015). doi: 10.1093/mnras/stv991 ADSCrossRefGoogle Scholar
  17. 17.
    A. van Engelen et al., Astrophys. J. 808(1), 7 (2015). doi: 10.1088/0004-637X/808/1/7 ADSCrossRefGoogle Scholar
  18. 18.
    E. Grace et al., Proc. SPIE 9153, 915310 (2014)CrossRefGoogle Scholar
  19. 19.
    S.P. Ho, et al., In this Special Issue LTD16 in J. Low Temp. PhysGoogle Scholar
  20. 20.
    R. Datta et al., In this Special Issue LTD16 in J. Low Temp. PhysGoogle Scholar
  21. 21.
    J. Delabrouille et al., A&A 553, A96 (2013). doi: 10.1051/0004-6361/201220019 ADSCrossRefGoogle Scholar
  22. 22.
    J.E. Carlstrom, G.P. Holder, E.D. Reese, Annu. Rev. Astron. Astrophys. 40, 643 (2002). doi: 10.1146/annurev.astro.40.060401.093803 ADSCrossRefGoogle Scholar
  23. 23.
    E.-M. Mueller et al., Phys. Rev. D 92, 063501 (2015). doi: 10.1103/PhysRevD.92.063501 ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    K.M. Smith et al., AIP Conf. Proc. 1141(1), 121 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    Z. Ivezic et al., arXiv:0805.2366 (2008)
  26. 26.
    S. Miyazaki et al., Proc. SPIE 6269, 62690B (2006)CrossRefGoogle Scholar
  27. 27.
    B.L. Flaugher et al., Proc. SPIE 8446, 844611 (2012)CrossRefGoogle Scholar
  28. 28.
    A. Merloni et al., arXiv:1209.3114 (2012)
  29. 29.
    K.S. Dawson et al., Astron. J. 145, 10 (2013). doi: 10.1088/0004-6256/145/1/10 ADSCrossRefGoogle Scholar
  30. 30.
    M. Levi et al., arXiv:1308.0847 (2013)
  31. 31.
    D.S. Swetz et al., Astrophys. J. Suppl. Ser. 194(2), 41 (2011). doi: 10.1088/0067-0049/194/2/41 ADSCrossRefGoogle Scholar
  32. 32.
    A. Kusaka et al., Rev. Sci. Instrum. 85(2), 024501 (2014). doi: 10.1063/1.4862058 ADSCrossRefGoogle Scholar
  33. 33.
    S. Hanany et al., Appl. Opt. 44(22), 4666 (2005). doi: 10.1364/AO.44.004666 ADSCrossRefGoogle Scholar
  34. 34.
    D. Li et al., In this Special Issue LTD16 in J. Low Temp. PhysGoogle Scholar
  35. 35.
    R. Datta et al., Appl. Opt. 52(36), 8747 (2013). doi: 10.1364/AO.52.008747 ADSCrossRefGoogle Scholar
  36. 36.
    R. Datta et al., J. Low Temp. Phys. 176(5–6), 670 (2014). doi: 10.1007/s10909-014-1134-4 ADSGoogle Scholar
  37. 37.
    S. Duff et al., In this Special Issue LTD16 in J. Low Temp. PhysGoogle Scholar
  38. 38.
    S.W. Deiker et al., Appl. Phys. Lett. 85(11), 2137 (2004). doi: 10.1063/1.1789575 ADSCrossRefGoogle Scholar
  39. 39.
    J. Austermann et al., In this Special Issue LTD16 in J. Low Temp. PhysGoogle Scholar
  40. 40.
    E. Battistelli et al., J. Low Temp. Phys. 151(3–4), 908 (2008). doi: 10.1007/s10909-008-9772-z ADSCrossRefGoogle Scholar
  41. 41.
    W.S. Holland et al., MNRAS 430, 2513 (2013). doi: 10.1093/mnras/sts612 ADSCrossRefGoogle Scholar
  42. 42.
    J. Beyer, D. Drung, Supercond. Sci. Technol. 21(10), 105022 (2008)ADSCrossRefGoogle Scholar
  43. 43.
    R. Doriese et al., In this Special Issue LTD16 in J. Low Temp. PhysGoogle Scholar
  44. 44.
    C. Pappas et al., In this Special Issue LTD16 in J. Low Temp. PhysGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • S. W. Henderson
    • 1
    Email author
  • R. Allison
    • 2
  • J. Austermann
    • 3
  • T. Baildon
    • 4
  • N. Battaglia
    • 5
  • J. A. Beall
    • 3
  • D. Becker
    • 3
  • F. De Bernardis
    • 1
  • J. R. Bond
    • 6
  • E. Calabrese
    • 5
  • S. K. Choi
    • 7
  • K. P. Coughlin
    • 4
  • K. T. Crowley
    • 7
  • R. Datta
    • 4
  • M. J. Devlin
    • 8
  • S. M. Duff
    • 3
  • J. Dunkley
    • 2
  • R. Dünner
    • 9
  • A. van Engelen
    • 6
  • P. A. Gallardo
    • 1
  • E. Grace
    • 7
  • M. Hasselfield
    • 5
  • F. Hills
    • 4
  • G. C. Hilton
    • 3
  • A. D. Hincks
    • 10
  • R. Hloẑek
    • 5
  • S. P. Ho
    • 7
  • J. Hubmayr
    • 3
  • K. Huffenberger
    • 11
  • J. P. Hughes
    • 12
  • K. D. Irwin
    • 13
  • B. J. Koopman
    • 1
  • A. B. Kosowsky
    • 14
  • D. Li
    • 3
    • 15
  • J. McMahon
    • 4
  • C. Munson
    • 4
  • F. Nati
    • 8
  • L. Newburgh
    • 16
  • M. D. Niemack
    • 1
  • P. Niraula
    • 7
  • L. A. Page
    • 7
  • C. G. Pappas
    • 7
  • M. Salatino
    • 7
  • A. Schillaci
    • 7
    • 22
  • B. L. Schmitt
    • 8
  • N. Sehgal
    • 17
  • B. D. Sherwin
    • 18
  • J. L. Sievers
    • 19
  • S. M. Simon
    • 7
  • D. N. Spergel
    • 5
  • S. T. Staggs
    • 7
  • J. R. Stevens
    • 1
  • R. Thornton
    • 20
  • J. Van Lanen
    • 3
  • E. M. Vavagiakis
    • 1
  • J. T. Ward
    • 8
  • E. J. Wollack
    • 21
  1. 1.Department of PhysicsCornell UniversityIthacaUSA
  2. 2.Sub-Department of AstrophysicsUniversity of OxfordOxfordUK
  3. 3.NIST Quantum Devices GroupBoulderUSA
  4. 4.Department of PhysicsUniversity of MichiganAnn ArborUSA
  5. 5.Department of Astrophysical Sciences, Peyton HallPrinceton UniversityPrincetonUSA
  6. 6.Canadian Institute for Theoretical AstrophysicsUniversity of TorontoTorontoCanada
  7. 7.Joseph Henry Laboratories of PhysicsJadwin Hall, Princeton UniversityPrincetonUSA
  8. 8.Department of Physics and AstronomyUniversity of PennsylvaniaPhiladelphiaUSA
  9. 9.Departamento de Astronomía y AstrofísicaPonticía Universidad CatólicaSantiago 22Chile
  10. 10.Department of Physics and AstronomyUniversity of British ColumbiaVancouverCanada
  11. 11.Department of PhysicsFlorida State UniversityTallahasseeUSA
  12. 12.Department of Physics and Astronomy, RutgersThe State University of New JerseyPiscatawayUSA
  13. 13.Department of PhysicsStanford UniversityStanfordUSA
  14. 14.Department of Physics and AstronomyUniversity of PittsburghPittsburghUSA
  15. 15.SLAC National Accelerator LaboratoryMenlo ParkUSA
  16. 16.Dunlap InstituteUniversity of TorontoTorontoCanada
  17. 17.Physics and Astronomy DepartmentStony Brook UniversityStony BrookUSA
  18. 18.Berkeley Center for Cosmological PhysicsUniversity of CaliforniaBerkeleyUSA
  19. 19.Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer ScienceUniversity of KwaZulu-NatalDurbanSouth Africa
  20. 20.Department of PhysicsWest Chester University of PennsylvaniaWest ChesterUSA
  21. 21.NASA Goddard Space Flight CenterGreenbeltUSA
  22. 22.Sociedad Radiosky Asesorías de Ingeniería Limitada Lincoyán 54Depto 805Chile

Personalised recommendations