Advertisement

Journal of Low Temperature Physics

, Volume 184, Issue 1–2, pp 454–459 | Cite as

Common Bias Readout for TES Array on Scanning Transmission Electron Microscope

  • R. Yamamoto
  • K. Sakai
  • K. Maehisa
  • K. Nagayoshi
  • T. Hayashi
  • H. Muramatsu
  • Y. Nakashima
  • K. Mitsuda
  • N.  Y. Yamasaki
  • Y. Takei
  • M. Hidaka
  • S. Nagasawa
  • K. Maehata
  • T. Hara
Article

Abstract

A transition edge sensor (TES) microcalorimeter array as an X-ray sensor for a scanning transmission electron microscope system is being developed. The technical challenge of this system is a high count rate of \(\sim \)5000 counts/second/array. We adopted a 64 pixel array with a parallel readout. Common SQUID bias, and common TES bias are planned to reduce the number of wires and the resources of a room temperature circuit. The reduction rate of wires is 44 % when a 64 pixel array is read out by a common bias of 8 channels. The possible degradation of the energy resolution has been investigated by simulations and experiments. The bias fluctuation effects of a series connection are less than those of a parallel connection. Simple calculations expect that the fluctuations of the common SQUID bias and common TES bias in a series connection are \(10^{-7}\) and \(10^{-3}\), respectively. We constructed 8 SQUIDs which are connected to 8 TES outputs and a room temperature circuit for common bias readout and evaluated experimentally. Our simulation of crosstalk indicates that at an X-ray event rate of 500 cps/pixel, crosstalk will broaden a monochromatic line by about 0.01 %, or about 1.5 eV at 15 keV. Thus, our design goal of 10 eV energy resolution across the 0.5–15 keV band should be achievable.

Keywords

TES X-ray STEM Common bias readout Crosstalk 

Notes

Acknowledgments

The SQUIDs were fabricated in the clean room for analog–digital superconductivity (CRAVITY) of National Institute of Advanced Industrial Science and Technology (AIST). This work was financially supported by SENTAN, Japan Science and Technology Agency (JST). This work was supported by JSPS Grants-in-Aid for Scientific Research 26\(\cdot \)1102. We are grateful to Akira Chiba for the first concept of the common bias readout.

References

  1. 1.
    K. Tanaka, K. Mitsuda, T. Hara, K. Maehata, N.Y. Yamasaki, A. Odawara, A. Nagata, K. Watanabe, Y. Takei, AIP Conf. Proc. 1185, 715 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    K. Maehata, T. Hara, K. Mitsuda, M. Hidaka, K. Tanaka, Y. Yamanaka, J. Low Temp. Phys. (2015). doi: 10.1007/s10909-015-1361-3
  3. 3.
    J.A. Chervenak, K.D. Irwin, E.N. Grossman, J.M. Martinis, C.D. Reintsema, M.E. Huber, Appl. Phys. Lett. 74, 4043 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    E. Heinz, V. Zakosarenko, T. May, H.G. Meyer, Supercond. Sci. Technol. 26, 04501 (2013)CrossRefGoogle Scholar
  5. 5.
    K. Sakai, R. Yamamoto, Y. Takei, N.Y. Yamasaki, K. Mitsuda, T. Miyazaki, M. Hidaka, S. Nagasawa, S. Kohjiro, in IEEE Proceedings for ISEC 2015, (accepted)Google Scholar
  6. 6.
    H. Muramatsu, K. Nagayoshi, T. Hayashi, K. Sakai, R. Yamamoto, K. Mitsuda, N.Y. Yamasaki, K. Maehata, T. Hara, J. Low Temp. Phys. (2015). doi: 10.1007/s10909-016-1547-3

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • R. Yamamoto
    • 1
  • K. Sakai
    • 1
  • K. Maehisa
    • 1
  • K. Nagayoshi
    • 1
  • T. Hayashi
    • 1
  • H. Muramatsu
    • 1
  • Y. Nakashima
    • 1
  • K. Mitsuda
    • 1
  • N.  Y. Yamasaki
    • 1
  • Y. Takei
    • 1
  • M. Hidaka
    • 2
  • S. Nagasawa
    • 2
  • K. Maehata
    • 3
  • T. Hara
    • 4
  1. 1.ISAS/JAXASagamiharaJapan
  2. 2.AISTTsukubaJapan
  3. 3.Kyushu UniversityFukuokaJapan
  4. 4.NIMSTsukubaJapan

Personalised recommendations