Advertisement

Journal of Low Temperature Physics

, Volume 185, Issue 3–4, pp 269–286 | Cite as

Thermoluminescence Dynamics During Destructions of Porous Structures Formed by Nitrogen Nanoclusters in Bulk Superfluid Helium

  • Adil Meraki
  • Shun Mao
  • Patrick T. McColgan
  • Roman E. Boltnev
  • David M. Lee
  • Vladimir V. Khmelenko
Article

Abstract

We studied the dynamics of thermoluminescence during destruction of porous structures formed by nanoclusters of nitrogen molecules containing high concentrations of stabilized nitrogen atoms. The porous structures were formed in bulk superfluid helium by injection of the products of discharges in nitrogen–helium gas mixtures through the liquid helium surface. Fast recombination of nitrogen atoms during warming-up led to explosive destruction of the porous structures accompanied by bright flashes. Intense emissions from the \(\alpha \)-group of nitrogen atoms, the \(\beta \)-group of oxygen atoms and the Vegard–Kaplan bands of N\(_2\) molecules were observed at the beginning of destruction. At the end of destruction the M- and \(\beta \)-bands of NO molecules as well as bands of O\(_2\) molecules were also observed. Observation of the emissions from NO molecules at the end of destruction was explained by processes of accumulation of NO molecules in the system due to the large van der Waals interaction of NO molecules. For the first time, we observed the emission of the O\(_2\) molecules at the end of destruction of the porous nitrogen structures as a result of the (NO)\(_2\) dimer formation in solid nitrogen and subsequent processes leading to the appearance of excited O\(_2\) molecules.

Keywords

Quantum solids Thermoluminescence Nanoclusters  Impurities and diffusion 

Notes

Acknowledgments

We gratefully acknowledge funding from NSF Grant No. DMR 1209255.

References

  1. 1.
    L. Vegard, Nature 113, 716–717 (1924)ADSCrossRefGoogle Scholar
  2. 2.
    L. Vegard, Nature 114, 357–359 (1924)ADSCrossRefGoogle Scholar
  3. 3.
    A.M. Bass, H.P. Broida, Formation and Trapping of Free Radicals (Academic, New York, 1960)Google Scholar
  4. 4.
    E. Savchenko, I. Khyzhniy, S. Uyutnov, A. Barabashov, G. Gumenchuk, A. Ponomaryov, V. Bondybey, Phys. Stat. Sol. C 12, 49–54 (2015)Google Scholar
  5. 5.
    E. Savchenko, I. Khyzhniy, S. Uyutnov, A. Barabashov, G. Gumenchuk, M.K. Beyer, A. Ponomaryov, V. Bondybey, J. Phys. Chem. A 119, 2475–2482 (2015)CrossRefGoogle Scholar
  6. 6.
    A.M. Bass, H.P. Broida, Phys. Rev. 101, 1740–1747 (1956)ADSCrossRefGoogle Scholar
  7. 7.
    B.J. Fontana, J. Appl. Phys. 29, 1668–1673 (1958)ADSCrossRefGoogle Scholar
  8. 8.
    M.J. Peyron, H.P. Broida, J. Chem. Phys. 30, 139–150 (1959)ADSCrossRefGoogle Scholar
  9. 9.
    H.P. Broida, M.J. Peyron, J. Chem. Phys. 32, 1068–1071 (1960)ADSCrossRefGoogle Scholar
  10. 10.
    E.B. Gordon, L.P. Mezhov-Deglin, O.F. Pugachev, JETP Lett. 19, 103–106 (1974)ADSGoogle Scholar
  11. 11.
    E.B. Gordon, L.P. Mezhov-Deglin, O.F. Pugachev, V.V. Khmelenko, Cryogenics 16(9), 555–557 (1976)ADSCrossRefGoogle Scholar
  12. 12.
    V.V. Khmelenko, H. Kunttu, D.M. Lee, J. Low Temp. Phys. 148, 1–31 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    V. Kiryukhin, B. Keimer, R.E. Boltnev, V.V. Khmelenko, E.B. Gordon, Phys. Rev. Lett. 79, 1774–1777 (1997)ADSCrossRefGoogle Scholar
  14. 14.
    S.I. Kiselev, V.V. Khmelenko, D.M. Lee, V. Kiryukhin, R.E. Boltnev, E.B. Gordon, B. Keimer, Phys. Rev. B 65, 024517–12 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    V. Kiryukhin, E.B. Bernard, V.V. Khmelenko, R.E. Boltnev, N.V. Krainyukova, D.M. Lee, Phys. Rev. Lett. 98, 195506–4 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    N.V. Krainyukova, R.E. Boltnev, E.P. Bernard, V.V. Khmelenko, D.M. Lee, V. Kiryukhin, Phys. Rev. Lett. 109, 245505–5 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    E.P. Bernard, V.V. Khmelenko, D.M. Lee, J. Low Temp. Phys. 150, 516–524 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    S. Mao, R.E. Boltnev, V.V. Khmelenko, D.M. Lee, Low Temp. Phys. 38, 1037–1042 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    E.B. Gordon, V.V. Khmelenko, E.A. Popov, A.A. Pelmenev, O.F. Pugachev, Chem. Phys. Lett. 155, 301–304 (1989)ADSCrossRefGoogle Scholar
  20. 20.
    E.P. Bernard, R.E. Boltnev, V.V. Khmelenko, D.M. Lee, J. Low Temp. Phys. 134, 199–204 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    R.E. Boltnev, I.N. Krushinskaya, A.A. Pelmenev, D.Y. Stolyarov, V.V. Khmelenko, Chem. Phys. Lett. 305, 217–224 (1999)ADSCrossRefGoogle Scholar
  22. 22.
    V.V. Khmelenko, D.M. Lee, I.N. Krushinskaya, R.E. Boltnev, I.B. Bykhalo, A.A. Pelmenev, Low Temp. Phys. 38, 871–883 (2012)CrossRefGoogle Scholar
  23. 23.
    V.V. Khmelenko, A.A. Pelmenev, I.N. Krushinskaya, I.B. Bykhalo, R.E. Boltnev, D.M. Lee, J. Low Temp. Phys. 171, 302–308 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    R.E. Boltnev, I.B. Bykhalo, I.N. Krushinskaya, A.A. Pelmenev, V.V. Khmelenko, S. Mao, A. Meraki, S.C. Wilde, P.T. McColgan, D.M. Lee, J. Phys. Chem. A 119, 2438–2446 (2015)CrossRefGoogle Scholar
  25. 25.
    H. Kajihara, T. Okamura, F. Okada, S. Koda, Laser Chem. 15, 83–92 (1995)CrossRefGoogle Scholar
  26. 26.
    J. Goodman, L.E. Brus, J. Chem. Phys. 67, 1482–1490 (1977)ADSCrossRefGoogle Scholar
  27. 27.
    S. Nourry, L. Krim, MNRAS 450, 2903–2914 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    M. Chergui, N. Schwentner, A. Tramer, Chem. Phys. Lett. 201, 187–193 (1993)ADSCrossRefGoogle Scholar
  29. 29.
    O. Oehler, D.A. Smith, K. Dressler, J. Chem. Phys. 66, 2097–2107 (1977)ADSCrossRefGoogle Scholar
  30. 30.
    I.Y. Fugol, Y.B. Poltotatski, Solid State Commun. 30, 497–500 (1979)ADSCrossRefGoogle Scholar
  31. 31.
    T.G. Slanger, J. Chem. Phys. 69, 4779–4791 (1978)ADSCrossRefGoogle Scholar
  32. 32.
    R.E. Boltnev, I.N. Krushinskaya, A.A. Pelmenev, E.A. Popov, D.Y. Stolyarov, V.V. Khmelenko, Low Temp. Phys. 31, 547–555 (2005)ADSCrossRefGoogle Scholar
  33. 33.
    E.M. Horl, J. Mol. Spectrosc. 3, 425–449 (1959)ADSCrossRefGoogle Scholar
  34. 34.
    J. Fournier, J. Deson, C. Vermeil, J. Chem. Phys. 68, 5062–5065 (1978)ADSCrossRefGoogle Scholar
  35. 35.
    L.G. Piper, L.M. Cowles, W.T. Pawlins, J. Chem. Phys. 85, 3369–3378 (1986)ADSCrossRefGoogle Scholar
  36. 36.
    F. Legay, N. Legay-Sommaire, Chem. Phys. Lett. 211, 516–522 (1993)ADSCrossRefGoogle Scholar
  37. 37.
    R.A. Ruehrwein, J.S. Hashman, J.W. Edwards, J. Phys. Chem. 64, 1317–1322 (1960)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Adil Meraki
    • 1
  • Shun Mao
    • 1
  • Patrick T. McColgan
    • 1
  • Roman E. Boltnev
    • 2
    • 3
  • David M. Lee
    • 1
  • Vladimir V. Khmelenko
    • 1
  1. 1.Department of Physics and Astronomy, Institute for Quantum Science & EngineeringTexas A & M UniversityCollege StationUSA
  2. 2.Branch of Talroze Institute for Energy Problems of Chemical PhysicsRussian Academy of SciencesChernogolovkaRussia
  3. 3.Joint Institute for High TemperaturesRussian Academy of SciencesMoscowRussia

Personalised recommendations