Advertisement

Journal of Low Temperature Physics

, Volume 184, Issue 3–4, pp 910–921 | Cite as

Recent Results for the ECHo Experiment

  • C. Hassel
  • K. Blaum
  • T. Day Goodacre
  • H. Dorrer
  • Ch. E. Düllmann
  • K. Eberhardt
  • S. Eliseev
  • C. Enss
  • P. Filianin
  • A. Fäßler
  • A. Fleischmann
  • L. Gastaldo
  • M. Goncharov
  • D. Hengstler
  • J. Jochum
  • K. Johnston
  • M. Keller
  • S. Kempf
  • T. Kieck
  • U. Köster
  • M. Krantz
  • B. Marsh
  • C. Mokry
  • Yu. N. Novikov
  • P. C. O. Ranitzsch
  • S. Rothe
  • A. Rischka
  • J. Runke
  • A. Saenz
  • F. Schneider
  • S. Scholl
  • R. X. Schüssler
  • F. Simkovic
  • T. Stora
  • P. Thörle-Pospiech
  • A. Türler
  • M. Veinhard
  • M. Wegner
  • K. Wendt
  • K. Zuber
Article

Abstract

The Electron Capture in \(^{163}\)Ho experiment, ECHo, is designed to investigate the electron neutrino mass in the sub-eV range by means of the analysis of the calorimetrically measured spectrum following the electron capture (EC) in \(^{163}\)Ho. Arrays of low-temperature metallic magnetic calorimeters (MMCs), read-out by microwave SQUID multiplexing, will be used in this experiment. With a first MMC prototype having the \(^{163}\)Ho source ion-implanted into the absorber, we performed the first high energy resolution measurement of the EC spectrum, which demonstrated the feasibility of such an experiment. In addition to the technological challenges for the development of MMC arrays, which preserve the single pixel performance in terms of energy resolution and bandwidth, the success of the experiment relies on the availability of large ultra-pure \(^{163}\)Ho samples, on the precise description of the expected spectrum, and on the identification and reduction of background. We present preliminary results obtained with standard MMCs developed for soft X-ray spectroscopy, maXs-20, where the \(^{163}\)Ho ion-implantation was performed using a high-purity \(^{163}\)Ho source produced by advanced chemical and mass separation. With these measurements, we aim at determining an upper limit for the background level due to source contamination and provide a refined description of the calorimetrically measured spectrum. We discuss the plan for a medium scale experiment, ECHo-1k, in which about \(1000\,\mathrm {Bq}\) of high-purity \(^{163}\)Ho will be ion-implanted into detector arrays. With one year of measuring time, we will be able to achieve a sensitivity on the electron neutrino mass below 20 eV/c\(^2\) (90 \(\%\) C.L.), improving the present limit by more than one order of magnitude. This experiment will guide the necessary developments to reach the sub-eV sensitivity.

Keywords

Neutrino mass Metallic magnetic calorimeters \(^{163}\)Ho 

Notes

Acknowledgments

This research was performed in the framework of the DFG Research Unit FOR 2202 “Neutrino Mass Determination by Electron Capture in \(^{163}\)Ho, ECHo” (funding under DU 1334/1-1, GA 2219/2-1, EW 299/7-1, JO 451/1-1, BL 981/5-1, EW 299/8-1) and was supported by the Max Planck Society, by the IMPRS-PTFS and by the EU (ERC Grant No. 290870-MEFUCO). H. D. acknowledges support by the Stufe 1 funding of the Johannes Gutenberg University Mainz.

References

  1. 1.
    KATRIN, Design Report (2004), FZKA7090Google Scholar
  2. 2.
    A. De Rujula, M. Lusignoli, Phys. Lett. B 118, 429 (1982)ADSCrossRefGoogle Scholar
  3. 3.
    L. Gastaldo et al., in preparation (2015)Google Scholar
  4. 4.
    L. Gastaldo et al., J. Low Temp. Phys. 176(5–6), 876 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    A. Fleischmann et al., AIP Conf. Proc. 1185, 571 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    P. C.-O. Ranitzsch et al., in preparation (2015)Google Scholar
  7. 7.
    B. Alpert et al., Eur. Phys. J. C 75, 112 (2015). arXiv:1412.5060 [3]
  8. 8.
  9. 9.
    S. Eliseev et al., Phys. Rev. Lett. 115, 062501 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    M. Block et al., Eur. Phys. J. D 45, 39 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    F. Schneider et al., Eur. Phys. J. A 51, 89 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    S. Eliseev et al., Appl. Phys. B 114, 107–128 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    P.C.-O. Ranitzsch et al., J. Low Temp. Phys. 167, 1004 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    R.G.H. Robertson, Phys. Rev. C 91, 035504 (2015). arXiv:1411.2906 [1]
  15. 15.
    A. Fäßler, Phys. Rev. C. 91 (2015) 045505, arXiv:1501.04338 [2]
  16. 16.
    A. Fäßler et al., Phys. Rev. C 91 (2015) 064302, arXiv:1503.0228 [2]
  17. 17.
    A. De Rúujula and M. Lusignoli (2015), arXiv:1510.05462
  18. 18.
    C. Enss. Topics in Applied Physics 99 (2005)Google Scholar
  19. 19.
    A. Fleischmann et al., in preparation (2015)Google Scholar
  20. 20.
    J.-P. Porst et al., J. Low Temp. Phys. 176, 617–623 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    C. Pies et al., J. Low Temp. Phys. 167, 269 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    L. Gastaldo et al., Nucl. Inst. Meth. A 711, 150 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    E. Kugler, Hyperfine Interact. 129, 23 (2000)ADSCrossRefGoogle Scholar
  24. 24.
    H. Dorrer et al., in preparation (2015)Google Scholar
  25. 25.
    M. Maiti et al., J. Rad. Nucl. Chem. (2015)Google Scholar
  26. 26.
    F. Schneider et al., submitted to NIMB (2015)Google Scholar
  27. 27.
    C. Geppert, K. Wendt, Pramana J. Phys. 75, 1057 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    J. Repp et al., Appl. Phys. B. 107, 983 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    C. Roux et al., Appl. Phys. B. 107, 997 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    J.A.B. Mates et al., Appl. Phys. Lett. 92(2), 023514 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    S. Kempf et al., J. Low Temp. Phys. 176(3–4), 426 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    P.T. Springer et al., Phys. Rev. A 35, 679 (1987)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • C. Hassel
    • 1
  • K. Blaum
    • 2
  • T. Day Goodacre
    • 7
  • H. Dorrer
    • 3
  • Ch. E. Düllmann
    • 3
  • K. Eberhardt
    • 3
  • S. Eliseev
    • 2
  • C. Enss
    • 1
  • P. Filianin
    • 2
  • A. Fäßler
    • 6
  • A. Fleischmann
    • 1
  • L. Gastaldo
    • 1
  • M. Goncharov
    • 2
  • D. Hengstler
    • 1
  • J. Jochum
    • 12
  • K. Johnston
    • 7
  • M. Keller
    • 1
  • S. Kempf
    • 1
  • T. Kieck
    • 5
  • U. Köster
    • 13
  • M. Krantz
    • 1
  • B. Marsh
    • 7
  • C. Mokry
    • 3
  • Yu. N. Novikov
    • 9
    • 15
  • P. C. O. Ranitzsch
    • 1
  • S. Rothe
    • 7
  • A. Rischka
    • 2
  • J. Runke
    • 3
  • A. Saenz
    • 14
  • F. Schneider
    • 3
  • S. Scholl
    • 12
  • R. X. Schüssler
    • 2
  • F. Simkovic
    • 10
  • T. Stora
    • 7
  • P. Thörle-Pospiech
    • 3
  • A. Türler
    • 8
  • M. Veinhard
    • 7
  • M. Wegner
    • 1
  • K. Wendt
    • 4
  • K. Zuber
    • 11
  1. 1.Kirchhoff Institute for PhysicsHeidelberg UniversityHeidelbergGermany
  2. 2.Max-Planck Institute for Nuclear PhysicsHeidelbergGermany
  3. 3.Institute for Nuclear ChemistryJohannes Gutenberg UniversityMainzGermany
  4. 4.Institute for PhysicsJohannes Gutenberg-UniversityMainzGermany
  5. 5.Institute for Physics – Institute for Nuclear ChemistryJohannes Gutenberg-UniversityMainzGermany
  6. 6.Institute for Theoretical PhysicsUniversity of TübingenTübingenGermany
  7. 7.ISOLDE, CERNGeneveSwitzerland
  8. 8.Paul Scherrer InstituteLaboratory for Radiochemistry and Environmental ChemistryVilligenSwitzerland
  9. 9.Petersburg Nuclear Physics InstituteGatchinaRussia
  10. 10.Department of Nuclear Physics and BiophysicsComenius UniversityBratislavaSlovakia
  11. 11.Institute for Nuclear and Particle PhysicsTU DresdenGermany
  12. 12.Physics InstituteUniversity of TübingenTübingenGermany
  13. 13.Institut Laue-LangevinGrenobleFrance
  14. 14.Institute for PhysicsHumboldt-University BerlinBerlinGermany
  15. 15.Max-Planck Institute for Nuclear PhysicsHeidelbergGermany

Personalised recommendations