Advertisement

Journal of Low Temperature Physics

, Volume 184, Issue 1–2, pp 66–73 | Cite as

AlMn Transition Edge Sensors for Advanced ACTPol

  • Dale LiEmail author
  • Jason E. Austermann
  • James A. Beall
  • Daniel T. Becker
  • Shannon M. Duff
  • Patricio A. Gallardo
  • Shawn W. Henderson
  • Gene C. Hilton
  • Shuay-Pwu Ho
  • Johannes Hubmayr
  • Brian J. Koopman
  • Jeffrey J. McMahon
  • Federico Nati
  • Michael D. Niemack
  • Christine G. Pappas
  • Maria Salatino
  • Benjamin L. Schmitt
  • Sara M. Simon
  • Suzanne T. Staggs
  • Jeff Van Lanen
  • Jonathan T. Ward
  • Edward J. Wollack
Article

Abstract

Advanced ACTPol (AdvACT) will use an array of multichroic polarization-sensitive AlMn transition edge sensor (TES) bolometers read out through time-division multiplexing. Aluminum doped with a low concentration of manganese can be deposited to a bulk film thickness for a more reliable superconducting critical temperature uniformity compared to thin bilayers. To build the TES, the AlMn alloy is deposited, over Nb wiring, to a specific thickness to set the TES normal resistance. The doping concentration of manganese coarsely defines the TES critical temperature, while a fine tuning is achieved by heating the deposited film to a specific temperature. The TES island is connected to the thermal bath via four silicon-nitride membranes, where their geometry defines the thermal conductance to the temperature of the bath. Lastly, the TES heat capacity is increased by addition of PdAu electrically connected to the AlMn film. Designs and performance characteristics of these AlMn TESs are presented for use in AdvACT.

Keywords

Transition edge sensor AlMn Bolometer Thin film Superconductor Microfabrication Heating Critical temperature 

Notes

Acknowledgments

This work was supported by the U.S. National Science Foundation through awards 1312380 and 1440226. The NIST authors would like to acknowledge the support of the NIST Quantum Initiative. The development of multichroic detectors and lenses was supported by NASA Grants NNX13AE56G and NNX14AB58G. The work of BJK, BLS, JTW, and SMS was supported by NASA Space Technology Research Fellowship awards.

References

  1. 1.
    S. W. Henderson et al., J. Low Temp. Phys. LTD16. (this Special Issue)Google Scholar
  2. 2.
    R. Datta et al., J. Low Temp. Phys. LTD16. (this Special Issue)Google Scholar
  3. 3.
    S. -P. Ho et al., J. Low Temp. Phys., in this Special IssueGoogle Scholar
  4. 4.
    M.D. Niemack et al., Proc. SPIE 7741, 77411S (2010)CrossRefGoogle Scholar
  5. 5.
    S. M. Duff et al., J. Low Temp. Phys., in this Special IssueGoogle Scholar
  6. 6.
    G. Boato et al., Phys. Rev. 148, 353 (1966)ADSCrossRefGoogle Scholar
  7. 7.
    G. O’Neil et al., J. Appl. Phys. 107, 093903 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    B.A. Young et al., Accelerators, spectrometers, detectors and associated equipment. Nucl. Instrum. Methods Phys. Res. Sect. A 520(1), 307 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    E. M. George et al., in Proceedings of the SPIE 8452, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VI, 84521F (2012); doi: 10.1117/12.925586
  10. 10.
    E.M. George et al., J. Low Temp. Phys. 176(3), 383 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    J. E. Austermann et al., in Proceedings of the SPIE 8452. Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VI, 84521E (2012); doi: 10.1117/12.927286
  12. 12.
    E.A. Grace et al., IEEE Trans. Appl. Supercond. 23(3), 2500704 (2013)MathSciNetCrossRefGoogle Scholar
  13. 13.
    S. Simon et al., J. Low Temp. Phys. LTD16. doi: 10.1007/s10909-015-1370-2 (this Special Issue)
  14. 14.
    K.D. Irwin, G.C. Hilton, in Transition-Edge Sensors. Cryogenic Particle Detection, (Springer, New York, 2005), pp. 63–150Google Scholar
  15. 15.
    K. T. Crowley et al., in Proceedings of the 36th ESA Antenna Workshop, 2015Google Scholar
  16. 16.
    P.D. Desai, J. Phys. Chem. Ref. Data 16(1), 109 (1987)ADSCrossRefGoogle Scholar
  17. 17.
    D. Shechtman et al., Phys. Rev. Lett. 53(20), 1951 (1984)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Dale Li
    • 1
    • 2
    Email author
  • Jason E. Austermann
    • 2
  • James A. Beall
    • 2
  • Daniel T. Becker
    • 2
  • Shannon M. Duff
    • 2
  • Patricio A. Gallardo
    • 3
  • Shawn W. Henderson
    • 3
  • Gene C. Hilton
    • 2
  • Shuay-Pwu Ho
    • 4
  • Johannes Hubmayr
    • 2
  • Brian J. Koopman
    • 3
  • Jeffrey J. McMahon
    • 5
  • Federico Nati
    • 6
  • Michael D. Niemack
    • 3
  • Christine G. Pappas
    • 4
  • Maria Salatino
    • 4
  • Benjamin L. Schmitt
    • 6
  • Sara M. Simon
    • 4
  • Suzanne T. Staggs
    • 4
  • Jeff Van Lanen
    • 2
  • Jonathan T. Ward
    • 6
  • Edward J. Wollack
    • 7
  1. 1.SLAC National Accelerator LaboratoryMenlo ParkUSA
  2. 2.National Institute of Standards and TechnologyBoulderUSA
  3. 3.Department of PhysicsCornell UniversityIthacaUSA
  4. 4.Department of PhysicsPrinceton UniversityPrincetonUSA
  5. 5.Department of PhysicsUniversity of MichiganAnn ArborUSA
  6. 6.Department of Physics and AstronomyUniversity of PennsylvaniaPhiladelphiaUSA
  7. 7.NASA Goddard Space Flight CenterGreenbeltUSA

Personalised recommendations