Advertisement

Journal of Low Temperature Physics

, Volume 184, Issue 3–4, pp 540–546 | Cite as

Radiation Tolerance of Aluminum Microwave Kinetic Inductance Detector

  • K. Karatsu
  • A. Dominjon
  • T. Fujino
  • T. Funaki
  • M. Hazumi
  • F. Irie
  • H. Ishino
  • Y. Kida
  • T. Matsumura
  • K. Mizukami
  • M. Naruse
  • T. Nitta
  • T. Noguchi
  • N. Oka
  • S. Sekiguchi
  • Y. Sekimoto
  • M. Sekine
  • S. Shu
  • Y. Yamada
  • T. Yamashita
Article

Abstract

Microwave kinetic inductance detector (MKID) is one of the candidates of focal plane detector for future satellite missions such as LiteBIRD. For the space use of MKIDs, the radiation tolerance is one of the challenges to be characterized prior to the launch. Aluminum (Al) MKIDs with 50 nm thickness on silicon substrate and on sapphire substrate were irradiated with a proton beam of 160 MeV at the heavy ion medical accelerator in Chiba. The total water-equivalent absorbed dose was \(\sim \)10 krad which should simulate the worst radiation absorption of 5 years observation at the Lagrange point L2. We measured characteristics of these MKIDs before and after the irradiation. We found no significant changes on resonator quality factor, responsivity, and recombination time of quasi-particles. The change on electrical noise equivalent power was also evaluated, and no significant increase was found at the noise level of \(O(10^{-18})\) W/\(\sqrt{ \mathrm{Hz} }\).

Keywords

Microwave kinetic inductance detectors Radiation tolerance LiteBIRD Satellite mission 

Notes

Acknowledgments

The irradiation test was supported by H. Kitamura under Research Project with Heavy Ions at NIRS-HIMAC. We would like to thank Atsuko Kibayashi for useful simulation and discussion about energy loss on a MKID device. This work was partially supported by Grants-in-Aid for Scientific Research from The Ministry of Education, Culture, Sports, Science, and Technology, Japan (KAKENHI Grant Number 25247022).

References

  1. 1.
    P.K. Day, H.G. LeDuc, B.A. Mazin, A. Vayonakis, J. Zmuidzinas, Nature 425, 817 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    J. Zmuidzinas, Annu. Rev. Condens. Mater. Phys. 3, 169 (2012)CrossRefGoogle Scholar
  3. 3.
    M. Hazumi et al., Proc. SPIE 8442, 844219 (2012)CrossRefGoogle Scholar
  4. 4.
    T. Matsumura et al., J. Low Temp. Phys. 176(5–6), 733 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    Y. Sekimoto et al., in Proceedings of ISSTT (2015)Google Scholar
  6. 6.
    R. Barends, S. van Vliet, J.J.A. Baselmans, S.J.C. Yates, J.R. Gao, T.M. Klapwijk, Phys. Rev. B 79, 020509 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    T. Noguchi, M. Naruse, Y. Sekimoto, IEEE Trans. Appl. Supercond. 23(3), 1501404 (2013)CrossRefGoogle Scholar
  8. 8.
    The Planck Collaboration, A&A 571, A10 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    M. Naruse, Y. Sekimoto, T. Noguchi, A. Miyachi, T. Nitta, Y. Uzawa, J. Low Temp. Phys. 167, 373 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    J.L. Barth, J.C. Isaacs, C. Poivey, NGST Document, 570 (2000)Google Scholar
  11. 11.
    M. Naruse, Y. Sekimoto, T. Noguchi, A. Miyachi, K. Karatsu, T. Nitta, M. Sekine, Y. Uzawa, T. Taino, H. Myoren, IEEE Trans. Terahertz Sci. Technol. 3(2), 180 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    J.J.A. Baselmans, S.J.C. Yates, P. Diener, P.J. de Visser, J. Low Temp. Phys. 167, 360 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    B.A. Mazin, Ph.D. thesis, California Institute of Technology (2004)Google Scholar
  14. 14.
    A.G. Kozorezov, A.F. Volkov, J.K. Wigmore, A. Peacock, A. Poelaert, R. den Hartog, Phys. Rev. B 61, 11807 (2000)ADSCrossRefGoogle Scholar
  15. 15.
    R. Barends, J.J.A. Baselmans, S.J.C. Yates, J.R. Gao, J.N. Hovenier, T.M. Klapwijk, Phys. Rev. Lett. 100, 257002 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • K. Karatsu
    • 1
  • A. Dominjon
    • 1
  • T. Fujino
    • 2
  • T. Funaki
    • 3
  • M. Hazumi
    • 4
  • F. Irie
    • 2
  • H. Ishino
    • 3
  • Y. Kida
    • 3
  • T. Matsumura
    • 5
  • K. Mizukami
    • 2
  • M. Naruse
    • 6
  • T. Nitta
    • 7
  • T. Noguchi
    • 1
  • N. Oka
    • 3
  • S. Sekiguchi
    • 1
    • 8
  • Y. Sekimoto
    • 1
    • 8
  • M. Sekine
    • 1
    • 8
  • S. Shu
    • 1
    • 8
  • Y. Yamada
    • 3
  • T. Yamashita
    • 2
  1. 1.Advanced Technology Center (ATC)National Astronomical Observatory of Japan (NAOJ)MitakaJapan
  2. 2.Yokohama National UniversityYokohamaJapan
  3. 3.Okayama UniversityOkayamaJapan
  4. 4.Institute of Particle and Nuclear Studies (IPNS), KEKTsukubaJapan
  5. 5.Institute of Space and Astronautical Science (ISAS), JAXASagamiharaJapan
  6. 6.Saitama UniversitySaitamaJapan
  7. 7.University of TsukubaTsukubaJapan
  8. 8.Department of Astronomy School of ScienceThe University of TokyoBunkyo-kuJapan

Personalised recommendations