Journal of Low Temperature Physics

, Volume 184, Issue 1–2, pp 217–224 | Cite as

Development for Germanium Blocked Impurity Band Far-Infrared Image Sensors with Fully-Depleted Silicon-On-Insulator CMOS Readout Integrated Circuit

  • T. Wada
  • Y. Arai
  • S. Baba
  • M. Hanaoka
  • Y. Hattori
  • H. Ikeda
  • H. Kaneda
  • C. Kochi
  • A. Miyachi
  • K. Nagase
  • H. Nakaya
  • M. Ohno
  • S. Oyabu
  • T. Suzuki
  • S. Ukai
  • K. Watanabe
  • K. Yamamoto
Article

Abstract

We are developing far-infrared (FIR) imaging sensors for low-background and high-sensitivity applications such as infrared astronomy. Previous FIR monolithic imaging sensors, such as an extrinsic germanium photo-conductor (Ge PC) with a PMOS readout integrated circuit (ROIC) hybridized by indium pixel-to-pixel interconnection, had three difficulties: (1) short cut-off wavelength (120 \(\upmu \)m), (2) large power consumption (10 \(\upmu \)W/pixel), and (3) large mismatch in thermal expansion between the Ge PC and the Si ROIC. In order to overcome these difficulties, we developed (1) a blocked impurity band detector fabricated by a surface- activated bond technology, whose cut-off wavelength is longer than 160 \(\upmu \)m, (2) a fully-depleted silicon-on-insulator CMOS ROIC which works below 4 K with 1 \(\upmu \)W/pixel operating power, and (3) a new concept, Si-supported Ge detector, which shows tolerance to thermal cycling down to 3 K. With these new techniques, we are now developing a \(32 \times 32 \) FIR imaging sensor.

Keywords

Infrared astronomy Infrared detectors Cryogenic CMOS ROIC 

Notes

Acknowledgments

This work was supported by JSPS KAKENHI Grant Numbers 20244016, 23340053, and 25109005. The authors thank Mitsubishi Heavy Industry Co., Ltd. for their large effort in the fabrication of SAB BIB device. The authors also thank LAPIS Semiconductor Co., Ltd. for their large effort in the fabrication of the FD-SOI CMOS device. The authors thank TDY Inc. and Tohnic Inc. for their support on Ge detector development. The authors thank Tohoku-Microtec Co., Ltd. for their support on micro-cone-shaped Au-bump.

References

  1. 1.
    H. Dole et al., Astron. Astrophys. 451, 417 (2006)Google Scholar
  2. 2.
    H. Murakami et al., PASJ 59, S369 (2007)ADSGoogle Scholar
  3. 3.
    M.W. Werner et al., ApJS 154, 1 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    G.L. Pibratt et al., Astron. Astrophys. 518, L1 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    M. Fujiwara et al., Appl. Opt. 42, 2166 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    T. Nakagawa et al., Proc. SPIE 8442, 84420O (2012)CrossRefGoogle Scholar
  7. 7.
    M.D. Petroff, M.G. Stapelbroek, U.S. Patent 4,568,960, 4 Feb 1986Google Scholar
  8. 8.
    T. Suga et al., Acta Metall. Mater. 40, S133 (1992)CrossRefGoogle Scholar
  9. 9.
    T. Wada, et al. in IRMMW-THz2010 (2010)Google Scholar
  10. 10.
    K. Watanabe et al., Jpn. J. Appl. Phys. 50, 015701 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    H. Kaneda et al., Jpn. J. Appl. Phys. 50, 066503 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    M. Hanaoka, et al. J. Low Temp. Phys. This Special Issue. doi:10.1007/s10909-016-1484-1
  13. 13.
    H. Nagata et al., IEEE Trans. Electron Devices 51, 270 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    P. Merken et al., Proc. SPIE 6275, 627516 (2006)CrossRefGoogle Scholar
  15. 15.
    P. Merken et al., Proc. SPIE 5498, 622–629 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    H. Nagata et al., AIPC 1185, 286–289 (2009)ADSGoogle Scholar
  17. 17.
    H. Nagata et al., IEICE Trans. Commun. E94–B, 2952 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    T. Wada et al., J. Low Temp. Phys. 167, 602 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    K. Nagase, et al., J. Low Temp. Phys. This Special IssueGoogle Scholar
  20. 20.
    K. Nagase, T. Wada, et al. in WOLTE-10 (2013)Google Scholar
  21. 21.
    M. Motoyoshi et al., JINST 10, C03004 (2015)CrossRefGoogle Scholar
  22. 22.
    T. Suzuki et al., PASP 124, 823 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    T. Wada et al., Appl. Phys. Express 10, 102503 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    R.R. Reeber, K. Wang, Mater. Chem. Phys. 46, 259 (1996)CrossRefGoogle Scholar
  25. 25.
    P. Goldsmith et al., Proc. SPIE 7010, 701020 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • T. Wada
    • 1
  • Y. Arai
    • 2
  • S. Baba
    • 1
    • 3
  • M. Hanaoka
    • 4
  • Y. Hattori
    • 4
  • H. Ikeda
    • 1
  • H. Kaneda
    • 4
  • C. Kochi
    • 1
    • 3
  • A. Miyachi
    • 1
  • K. Nagase
    • 1
    • 5
  • H. Nakaya
    • 6
  • M. Ohno
    • 7
  • S. Oyabu
    • 4
  • T. Suzuki
    • 1
  • S. Ukai
    • 4
  • K. Watanabe
    • 8
  • K. Yamamoto
    • 1
    • 5
  1. 1.Institute of Space and Astronautical ScienceJapan Aerospace Exploration AgencySagamiharaJapan
  2. 2.High Energy Accelerator Research OrganizationTsukubaJapan
  3. 3.Department of PhysicsThe University of TokyoTokyoJapan
  4. 4.Department of PhysicsNagoya UniversityNagoyaJapan
  5. 5.Department of Space and Astronautical ScienceThe Graduate University for Advanced StudiesSagamiharaJapan
  6. 6.National Astronomical Observatory of JapanMitakaJapan
  7. 7.National Institute of Advanced Industrial Science and TechnologyTsukubaJapan
  8. 8.Research Center for Advanced Science and TechnologyThe University of TokyoTokyoJapan

Personalised recommendations