Advertisement

Journal of Low Temperature Physics

, Volume 184, Issue 3–4, pp 952–957 | Cite as

Cryogenic Detectors for Rare Alpha Decay Search: A New Approach

  • N. Casali
  • A. Dubovik
  • S. Nagorny
  • S. Nisi
  • F. Orio
  • L. Pattavina
  • S. Pirro
  • K. Schäffner
  • I. Tupitsyna
  • A. Yakubovskaya
Article

Abstract

The detection of \(^{148}\)Sm alpha decay with a precise measured half-life of \(\left( {6.4_{-1.3}^{+1.2} }\right) \times 10^{15}y\) and a Q-value of 1987.3 \(\pm \) 0.5 keV was achieved by a new experimental approach, where a conventional ZnWO\(_{4}\) scintillating crystal doped with enriched \(^{148}\)Sm isotope is operated as a cryogenic scintillating bolometer (phonon and light channel) at mK-temperatures.

Keywords

Scintillating bolometer ZnWO\(_{4}\) crystal Enriched \(^{148}\)Sm isotope Rare alpha decay 

Notes

Acknowledgments

This work was supported by the ISOTTA project, funded within the ASPERA 2nd Common Call for R&D Activities. Part of the work was carried out thanks to LUCIFER Project, funded by the European Research Council (FP7/2007-2013) Grant Agreement No. 247115.

References

  1. 1.
    P. de Marcillac et al., Nature 422, 876 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    C. Cozzini et al., Phys. Rev. C 70, 064606 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    J.W. Beeman et al., Phys. Rev. Lett. 108, 062501 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    J.W. Beeman et al., Eur. Phys. J. A 49, 50 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    N. Casali et al., J. Phys. G 41, 075101 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    L.L. Nagornaya et al., IEEE Trans. Nucl. Sci. 56, 994 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    L.L. Nagornaya et al., IEEE Trans. Nucl. Sci. 55, 1469 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    M. Globus, B. Grinyov, J.K. Kim, in Inorganic Scintillators for Modern and Traditional Applications, Presses “Institute for Single Crystals”, Kharkov-Ukraine-2005, 966–02, ISBN 966-02-2555-5-3707-3Google Scholar
  9. 9.
    F.A. Danevich et al., Nucl. Instrum. Method A 544, 553 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    P. Belli et al., Nucl. Instrum. Method A 626–627, 31 (2011)CrossRefGoogle Scholar
  11. 11.
    H. Kraus et al., Nucl. Instrum. Method A 600, 594 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    V.A. Korolev et al., Yad. Fiz. 8, 227 (1968)Google Scholar
  13. 13.
    V.A. Korolev et al., translation - Soviet. J. Nucl. Phys. 8, 131 (1969)Google Scholar
  14. 14.
    M.C. Gupta, R.D. MacFarlane, J. Inorg. Nucl. Chem. 32, 3425 (1970)CrossRefGoogle Scholar
  15. 15.
    I. Tupitsyna et al., Growth of samarium doped zinc tungstate crystals by the Czochralski Method, prepared for printing in the J. Cryst. GrowthGoogle Scholar
  16. 16.
    M. Berglund, M.E. Wieser, Pure Appl. Chem. 83, 397 (2011)CrossRefGoogle Scholar
  17. 17.
    J.W. Beeman et al., J. Instrum. 8, 05021 (2013)CrossRefGoogle Scholar
  18. 18.
    S. Pirro et al., Nucl. Instrum. Method A 444, 331 (2000)ADSCrossRefGoogle Scholar
  19. 19.
    C. Arnaboldi et al., Nucl. Instrum. Method A 520, 578 (2002)ADSCrossRefGoogle Scholar
  20. 20.
    G. Piperno et al., J. Instrum. 6, 10005 (2011)CrossRefGoogle Scholar
  21. 21.
    G. Audi et al., Chin. Phys. C 36, 1287 (2012)CrossRefGoogle Scholar
  22. 22.
    M. Wang et al., Chin. Phys. C 36, 1603 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    B. Buck et al., J. Phys. G 17, 1223 (1991)ADSCrossRefGoogle Scholar
  24. 24.
    B. Buck et al., J. Phys. G 18, 143 (1992)ADSCrossRefGoogle Scholar
  25. 25.
    G. Royer, J. Phys. G 26, 1149 (2000)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • N. Casali
    • 1
    • 2
  • A. Dubovik
    • 3
  • S. Nagorny
    • 4
  • S. Nisi
    • 5
  • F. Orio
    • 2
  • L. Pattavina
    • 5
  • S. Pirro
    • 5
  • K. Schäffner
    • 5
  • I. Tupitsyna
    • 3
  • A. Yakubovskaya
    • 3
  1. 1.Dipartimento di Fisica - Università di Roma La SapienzaRomaItaly
  2. 2.INFN - Sezione di Roma IRomaItaly
  3. 3.Institute for Scintillation MaterialsKharkovUkraine
  4. 4.INFN – Gran Sasso Scientific InstituteL‘AquilaItaly
  5. 5.INFN - Laboratori Nazionali del Gran SassoAssergiItaly

Personalised recommendations