Advertisement

Journal of Low Temperature Physics

, Volume 184, Issue 3–4, pp 615–620 | Cite as

Superconducting Pathways Through Kilopixel Backshort–Under–Grid Arrays

  • C. A. Jhabvala
  • D. J. Benford
  • R. P. Brekosky
  • N. P. Costen
  • A. M. Datesman
  • G. C. Hilton
  • K. D. Irwin
  • S. F. Maher
  • G. Manos
  • T. M. Miller
  • S. H. Moseley
  • E. H. Sharp
  • J. G. Staguhn
  • F. Wang
  • E. J. Wollack
Article

Abstract

We have demonstrated in the laboratory multiple, fully functional, kilopixel, bolometer arrays for the upgraded instrument, the High-resolution airborne wideband camera plus (HAWC+), for the stratospheric observatory for infrared astronomy (SOFIA). Each kilopixel array consists of three individual components assembled into a single working unit: (1) a filled, Transition Edge Sensor (TES) bolometer array, (2) an infrared, back-termination, and (3) an integrated, two-dimensional superconducting quantum interference device (SQUID) multiplexer readout. Kilopixel TES arrays are directly indium-bump-bonded to a 32  \(\times \)  40 SQUID multiplexer (MUX) circuit. In order to provide a fully superconducting pathway from the TES to the SQUID readout, numerous superconductor-to-superconductor interfaces must be made. This paper focuses on the fabrication techniques needed to create the superconducting path from the TES, out of the detector membrane, through the wafer, and to the SQUID readout.

Keywords

Backshort–Under–Grid Bolometer HAWC+ Through wafer via Transition edge sensor Indium bump bonding Atomic layer deposition 

Notes

Acknowledgments

This work was supported through a series of NASA awards, including the High resolution Airborne Wideband Camera Plus (HAWC+/SOFIA, Dr. Darren Dowell, Principal Investigator) and the Primordial Inflation Polarization Explorer (PIPER, Dr. Alan Kogut, Principal Investigator). The authors also wish to thank the work of Dr. James A. Chervenak, NASA Goddard Space Flight Center, Detector Systems Branch, for cryogenic test support.

References

  1. 1.
    R.F. Silverberg et al., Two bolometer arrays for far-infrared and submillimeter astronomy. Proc. SPIE 5498, 187–195 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    C.A. Allen et al., Technology developments toward large format long wavelenth bolometer arrays. Proc. SPIE 6678, 667806 (2007)CrossRefGoogle Scholar
  3. 3.
    C.A. Allen, D.J. Benford, C.J. Chervenak, D.T. Chuss, T.M. Miller, S.H. Moseley, J.G. Staguhn, E.J. Wollack, Backshort–Under–Grid arrays for infrared astronomy. Nucl. Instrum. Methods Phys. Res. A (NIMPA) 559, 522–524 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    B. Carli, D. Iorio-Fili, Absorption of composite bolometers. J. Opt. Soc. Am. 71(8), 1020–1025 (1981)ADSCrossRefGoogle Scholar
  5. 5.
    C.D. Reintsema et al., Prototype system for superconducting quantum interference device multiplexing of large-format transition-edge sensor arrays. Rev. Sci. Instrum. 74, 4500 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    J. Beyer, D. Drung, A SQUID multiplexer with superconducting-to-normal conducting switches. Supercond. Sci. Tech. 21, 105022 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    J.G. Staguhn, D.J. Benford, J.A. Chervenak, S.H. Moseley, C.A. Allen, R. Stevenson, W.-T. Hsieh, Design techniques for improved noise performance of superconducting transition edge sensor bolometers. SPIE 5498, 390–395 (2004)ADSGoogle Scholar
  8. 8.
    C.A. Jhabvala et al., in Kilopixel Backshort-Under-Grid Arrays for the Primordial Inflation Polarization Explorer. Proc. SPIE, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII, vol. 9153 (2014)Google Scholar
  9. 9.
    T.M. Miller, N.P. Costen, C.A. Allen, Indium hybridization of large format TES bolometer arrays to readout multiplexers for far-infrared astronomy. J. Low Temp. Phys. 151(1–2), 483-488 (2008)Google Scholar
  10. 10.
    J.V. Migacz, M.E. Huber, Thermal annealing of Nb/Al–AlO\(_{x}\)/Nb Josephson junctions. IEEE Trans. Appl. Supercond. 13(2), 123–126 (2003)Google Scholar

Copyright information

© Springer Science+Business Media New York (outside the USA) 2016

Authors and Affiliations

  • C. A. Jhabvala
    • 1
  • D. J. Benford
    • 1
  • R. P. Brekosky
    • 2
  • N. P. Costen
    • 2
  • A. M. Datesman
    • 2
  • G. C. Hilton
    • 3
  • K. D. Irwin
    • 4
  • S. F. Maher
    • 6
  • G. Manos
    • 1
  • T. M. Miller
    • 1
  • S. H. Moseley
    • 1
  • E. H. Sharp
    • 5
  • J. G. Staguhn
    • 7
  • F. Wang
    • 8
  • E. J. Wollack
    • 1
  1. 1.NASA Goddard Space Flight CenterGreenbeltUSA
  2. 2.Stinger Ghaffarian Technologies, Inc.SeabrookUSA
  3. 3.National Institute of Standards and TechnologyBoulderUSA
  4. 4.Department of PhysicsStanford UniversityStanfordUSA
  5. 5.Global Science and Technology, Inc.GreenbeltUSA
  6. 6.Science Systems and Applications, Inc.GreenbeltUSA
  7. 7.Johns Hopkins UniversityBaltimoreUSA
  8. 8.ASRC Federal Space and DefenseGreenbeltUSA

Personalised recommendations