Journal of Low Temperature Physics

, Volume 184, Issue 1–2, pp 225–230 | Cite as

Development of Blocked-Impurity-Band-Type Ge Detectors Fabricated with the Surface-Activated Wafer Bonding Method for Far-Infrared Astronomy

  • M. Hanaoka
  • H. Kaneda
  • S. Oyabu
  • M. Yamagishi
  • Y. Hattori
  • S. Ukai
  • K. Shichi
  • T. Wada
  • T. Suzuki
  • K. Watanabe
  • K. Nagase
  • S. Baba
  • C. Kochi
Article

Abstract

We report the current status of the development of our new detectors for far-infrared (FIR) astronomy. We develop Blocked-Impurity-Band (BIB)-type Ge detectors to realize large-format compact arrays covering a wide FIR wavelength range up to 200 \(\upmu \)m. We fabricated Ge junction devices of different physical parameters with a BIB-type structure, using the room temperature, surface-activated wafer bonding (SAB) method. We measured the absolute responsivity and the spectral response curve of each device at low temperatures, using an internal blackbody source in a cryostat and a Fourier transform spectrometer, respectively. The results show that the SAB Ge junction devices have significantly higher absolute responsivities and longer cut-off wavelengths of the spectral response than the conventional bulk Ge:Ga device. Based upon the results, we discuss the optimum parameters of SAB Ge junction devices for FIR detectors. We conclude that SAB Ge junction devices possess a promising applicability to next-generation FIR detectors covering wavelengths up to \(\sim \)200 \(\upmu \)m with high responsivity. As a next step, we plan to fabricate a BIB-type Ge array device in combination with a low-power cryogenic readout integrated circuit.

Keywords

Instrument Far-infrared detector Ge photoconductor  Blocked-Impurity-Band detector 

Notes

Acknowledgments

This work was supported by JSPS KAKENHI Grant Numbers 20244016, 25109005, and 25247020. The authors are grateful to Mitsubishi Heavy Industries for their technical support in the surface-activated wafer bonding.

References

  1. 1.
    Y. Doi et al., Exp. Astron. 10, 393–401 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    M. D. Petroff and M. G. Stapelbroek, U.S. Patent 4568960 (1986)Google Scholar
  3. 3.
    H. Kaneda et al., Jpn. J. Appl. Phys. 50, 066503 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    D.M. Watson, J.E. Huffman, Appl. Phys. Lett. 52, 1602 (1988)ADSCrossRefGoogle Scholar
  5. 5.
    H. Takagi et al., Appl. Phys. Lett 68, 2222 (1996)ADSCrossRefGoogle Scholar
  6. 6.
    H. Takagi, R. Maeda, J. Cryst. Growth 292, 429 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    K. Watanabe et al., Jpn. J. Appl. Phys. 50, 015701 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    T. Suzuki et al., Publ. Astron. Soc. Pac. 124, 823 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    H. Nagata et al., AIP Conf. Proc. 1185, 267 (2009)ADSGoogle Scholar
  10. 10.
    T. Wada et al., J. Low. Temp. Phys 167, 602 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    K. Nagase et al., J. Low. Temp. Phys. This Special IssueGoogle Scholar
  12. 12.
    T. Wada et al., J. Low. Temp. Phys. This Special Issue. doi:10.1007/s10909-015-1393-8

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • M. Hanaoka
    • 1
  • H. Kaneda
    • 1
  • S. Oyabu
    • 1
  • M. Yamagishi
    • 1
  • Y. Hattori
    • 1
  • S. Ukai
    • 1
  • K. Shichi
    • 1
  • T. Wada
    • 2
  • T. Suzuki
    • 2
  • K. Watanabe
    • 3
  • K. Nagase
    • 2
  • S. Baba
    • 2
  • C. Kochi
    • 2
  1. 1.Nagoya UniversityNagoyaJapan
  2. 2.Institute of Space and Astronautical ScienceJapan Aerospace Exploration AgencySagamiharaJapan
  3. 3.Research Center for Advanced Science and TechnologyUniversity of TokyoTokyoJapan

Personalised recommendations