Advertisement

Journal of Low Temperature Physics

, Volume 184, Issue 1–2, pp 505–511 | Cite as

An HEMT-Based Cryogenic Charge Amplifier for Sub-kelvin Semiconductor Radiation Detectors

  • A. PhippsEmail author
  • B. Sadoulet
  • A. Juillard
  • Y. Jin
Article

Abstract

We present the design and noise performance of a fully cryogenic (\(T=4\) K) high-electron mobility transistor (HEMT)-based charge amplifier for readout of sub-kelvin semiconductor radiation detectors. The amplifier is being developed for use in direct detection dark matter searches such as the cryogenic dark matter search and will allow these experiments to probe weakly interacting massive particle masses below 10 GeV/\(c^2\) while retaining background discrimination. The amplifier dissipates \(\approx \)1 mW of power and provides an open loop voltage gain of several hundreds. The measured noise performance is better than that of JFET-based charge amplifiers and is dominated by the noise of the input HEMT. An optimal filter calculation using the measured closed loop noise and typical detector characteristics predicts a charge resolution of \(\sigma _q\)=106 eV (35 electrons) for leakage currents below \(4 \times 10^{-15}\) A.

Keywords

HEMT Charge amplifier Cryogenic electronics Dark matter Radiation detectors 

Notes

Acknowledgments

This work was supported in part by the National Science Foundation.

References

  1. 1.
    R. Abusaidi et al., Phys. Rev. Lett. 84, 5699 (2000). doi: 10.1103/PhysRevLett.84.5699 ADSCrossRefGoogle Scholar
  2. 2.
    D.S. Akerib et al., Phys. Rev. D 72, 052009 (2005). doi: 10.1103/PhysRevD.72.052009 ADSCrossRefGoogle Scholar
  3. 3.
    Z. Ahmed et al., Phys. Rev. Lett. 102, 011301 (2009). doi: 10.1103/PhysRevLett.102.011301 ADSCrossRefGoogle Scholar
  4. 4.
    Z. Ahmed et al., Science 327, 1619 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    V. Sanglard et al., Phys. Rev. D 71, 122002 (2005). doi: 10.1103/PhysRevD.71.122002 ADSCrossRefGoogle Scholar
  6. 6.
    E. Armengaud et al., Phys. Lett. B 687, 294 (2010). doi: 10.1016/j.physletb.2010.03.057 ADSCrossRefGoogle Scholar
  7. 7.
    E. Armengaud et al., Phys. Lett. B 702, 329 (2011). doi: 10.1016/j.physletb.2011.07.034 ADSCrossRefGoogle Scholar
  8. 8.
    M. Pospelov, A. Ritz, M. Voloshin, Phys. Rev. D 78, 115012 (2008). doi: 10.1103/PhysRevD.78.115012 ADSCrossRefGoogle Scholar
  9. 9.
    D. Hooper, L. Goodenough, Phys. Lett. B 697, 412 (2011). doi: 10.1016/j.physletb.2011.02.029 ADSCrossRefGoogle Scholar
  10. 10.
    E. Armengaud et al., Phys. Rev. D 86, 051701 (2012). doi: 10.1103/PhysRevD.86.051701 ADSCrossRefGoogle Scholar
  11. 11.
    G. Angloher et al., Eur. Phys. J. C 72, 1971 (2012). doi: 10.1140/epjc/s10052-012-1971-8 ADSCrossRefGoogle Scholar
  12. 12.
    D. Hooper, N. Weiner, W. Xue, Phys. Rev. D 86, 056009 (2012). doi: 10.1103/PhysRevD.86.056009 ADSCrossRefGoogle Scholar
  13. 13.
    R. Agnese et al., Phys. Rev. Lett. 111, 251301 (2013). doi: 10.1103/PhysRevLett.111.251301 ADSCrossRefGoogle Scholar
  14. 14.
    C.E. Aalseth et al., Phys. Rev. D 88, 012002 (2013). doi: 10.1103/PhysRevD.88.012002 ADSCrossRefGoogle Scholar
  15. 15.
    R. Agnese et al., Phys. Rev. Lett. 112, 241302 (2014). doi: 10.1103/PhysRevLett.112.241302 ADSCrossRefGoogle Scholar
  16. 16.
    R. Agnese et al., Phys. Rev. Lett. 112, 041302 (2014). doi: 10.1103/PhysRevLett.112.041302 ADSCrossRefGoogle Scholar
  17. 17.
    D. Akerib et al., Nucl. Instrum. Methods Phys. Res. A 591, 476 (1998)ADSCrossRefGoogle Scholar
  18. 18.
    Q. Dong, Y.X. Liang, D. Ferry, A. Cavanna, U. Gennser, L. Couraud, Y. Jin, Appl. Phys. Lett. 105, 013504 (2014). doi: 10.1063/1.4887368 ADSCrossRefGoogle Scholar
  19. 19.
    A. Phipps, Y. Jin, B. Sadoulet, J. Low Temp. Phys. 176, 3–4 (2014). doi: 10.1007/s10909-013-1062-8 CrossRefGoogle Scholar
  20. 20.
    P.R. Gray, P. Hurst, R. Meyer, S. Lewis, Analysis and Design of Analog Integrated Circuits, 4th edn. (Wiley, New York, 2001)Google Scholar
  21. 21.
    C. Enss, Cryogenic Particle Detection (Springer, Berlin, 2005)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of California BerkeleyBerkeleyUSA
  2. 2.IPNL, Université de Lyon, Université Lyon 1, CNRS/IN2P3Villeurbanne CedexFrance
  3. 3.CNRS, Laboratoire de Photonique et de Nanostructures (LPN)MarcoussisFrance

Personalised recommendations