Journal of Low Temperature Physics

, Volume 184, Issue 1–2, pp 473–479

High-Density Superconducting Cables for Advanced ACTPol

  • C. G. Pappas
  • J. Austermann
  • J. A. Beall
  • S. M. Duff
  • P. A. Gallardo
  • E. Grace
  • S. W. Henderson
  • S. P. Ho
  • B. J. Koopman
  • D. Li
  • J. McMahon
  • F. Nati
  • M. D. Niemack
  • P. Niraula
  • M. Salatino
  • A. Schillaci
  • B. L. Schmitt
  • S. M. Simon
  • S. T. Staggs
  • J. R. Stevens
  • E. M. Vavagiakis
  • J. T. Ward
  • E. J. Wollack
Article
  • 136 Downloads

Abstract

Advanced ACTPol (AdvACT) is an upcoming Atacama Cosmology Telescope (ACT) receiver upgrade, scheduled to deploy in 2016, that will allow measurement of the cosmic microwave background polarization and temperature to the highest precision yet with ACT. The AdvACT increase in sensitivity is partly provided by an increase in the number of transition-edge sensors (TESes) per array by up to a factor of two over the current ACTPol receiver detector arrays. The high-density AdvACT TES arrays require 70 \(\upmu \)m pitch superconducting flexible cables (flex) to connect the detector wafer to the first-stage readout electronics. Here, we present the flex fabrication process and test results. For the flex wiring layer, we use a 400-nm-thick sputtered aluminum film. In the center of the cable, the wiring is supported by a polyimide substrate, which smoothly transitions to a bare (uncoated with polyimide) silicon substrate at the ends of the cable for a robust wedge wire-bonding interface. Tests on the first batch of flex made for the first AdvACT array show that the flex will meet the requirements for AdvACT, with a superconducting critical current above 1 mA at 500 mK, resilience to mechanical and cryogenic stress, and a room temperature yield of 97\(\,\%\).

Keywords

Atacama Cosmology Telescope ACTPol Detector Flex  Superconductor Wire bonding 

References

  1. 1.
    M.D. Niemack, In Proceedings of SPIE, pp. 77411S–1 -77411S-21 (2010)Google Scholar
  2. 2.
    J. McMahon et al., J. Low Temp. Phys. 167(5–6), 879–884 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    M.J. Griffin, J.J. Bock, W.K. Gear, Appl. Opt. 41, 6543–6554 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    S. Henderson et al., J. Low Temp. Phys., in this Special IssueGoogle Scholar
  5. 5.
    J.A. Chervenak et al., Appl. Phys. Lett. 74(26), 4043–4045 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    E.S. Battistelli et al., J. Low Temp. Phys. 151(3–4), 908–914 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    K.D. Irwin, Physica C 368(1), 203–210 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    M.A. Dobbs et al., Rev. Sci. Instrum. 83(7), 073113 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    S. P. Ho et al., J. Low Temp. Phys., in this Special IssueGoogle Scholar
  10. 10.
    C.A. Allen, D.E. Franz, S.H. Moseley, J. Vac. Sci. Technol. A 24(4), 1552–1555 (2006)CrossRefGoogle Scholar
  11. 11.
    H. van Weers, G. Kunkel, M. Lindeman, M. Leeman, Cryogenics 55, 1–4 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    C.G. Pappas, IEEE Trans. Appl. Supercond. 25(3), 1 (2015)CrossRefGoogle Scholar
  13. 13.
    D. Lu, C.P. Wong, Materials for Advanced Packaging (Springer, New York, 2008)Google Scholar
  14. 14.
    PI-2600 Process Guide, HD Microsystems, 2009Google Scholar
  15. 15.
    M. Tinkham, Introduction to Superconductivity (Dover Publications, New York, 2004)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • C. G. Pappas
    • 1
  • J. Austermann
    • 2
  • J. A. Beall
    • 2
  • S. M. Duff
    • 2
  • P. A. Gallardo
    • 3
  • E. Grace
    • 1
  • S. W. Henderson
    • 3
  • S. P. Ho
    • 1
  • B. J. Koopman
    • 3
  • D. Li
    • 4
  • J. McMahon
    • 5
  • F. Nati
    • 6
  • M. D. Niemack
    • 3
  • P. Niraula
    • 1
  • M. Salatino
    • 1
  • A. Schillaci
    • 1
  • B. L. Schmitt
    • 6
  • S. M. Simon
    • 1
  • S. T. Staggs
    • 1
  • J. R. Stevens
    • 3
  • E. M. Vavagiakis
    • 3
  • J. T. Ward
    • 6
  • E. J. Wollack
    • 7
  1. 1.Department of PhysicsPrinceton UniversityPrincetonUSA
  2. 2.National Institute of Standards and TechnologyBoulderUSA
  3. 3.Department of PhysicsCornell UniversityIthacaUSA
  4. 4.SLAC National Accelerator LaboratoryMenlo ParkUSA
  5. 5.Department of PhysicsUniversity of MichiganAnn ArborUSA
  6. 6.Department of Physics and AstronomyUniversity of PennsylvaniaPhiladelphiaUSA
  7. 7.Goddard Space Flight CenterGreenbeltUSA

Personalised recommendations