Journal of Low Temperature Physics

, Volume 184, Issue 3–4, pp 873–878 | Cite as

Neutrinoless Double Beta Decay with CUORE-0: Physics Results and Detector Performance

  • L. Canonica


The CUORE-0 experiment searches for neutrinoless double beta decay in \(^{130}\)Te. It consists of an array of 52 tellurium dioxide crystals, operated as bolometers at a temperature of 10 mK, with a total mass of about 39 kg of TeO\(_2\). CUORE-0 has been built to test the performance of the upcoming CUORE experiment and represents the largest \(^{130}\)Te bolometric setup currently in operation. This experiment has been running in the Gran Sasso National Laboratory, Italy, since March 2013. We report the results of a search for neutrinoless double beta decay in 9.8 kg years \(^{130}\)Te exposure, which allowed us to set the most stringent limit to date on this half-life. The performance of the detector in terms of background rate and energy resolution are also reported.


Bolometers Low radioactivity Neutrinoless double beta decay Underground detectors 



The CUORE Collaboration thanks the directors and staff of the Laboratori Nazionali del Gran Sasso and our technical staff for their valuable contribution to building and operating the detector. This work was supported by the Istituto Nazionale di Fisica Nucleare (INFN); the National Science Foundation under Grant Nos. NSF-PHY-0605119, NSF-PHY-0500337, NSF-PHY-0855314, NSF-PHY-0902171, NSF-PHY-0969852, NSF-PHY-1307204, and NSF-PHY-1404205; the Alfred P. Sloan Foundation; the University of Wisconsin Foundation; and Yale University. This material is also based upon work supported by the US Department of Energy (DOE) Office of Science under Contract Nos. DE-AC02-05CH11231 and DE-AC52-07NA27344 and by the DOE Office of Science, Office of Nuclear Physics under Contract Nos. DE-FG02-08ER41551 and DEFG03-00ER41138. This research used resources of the National Energy Research Scientific Computing Center (NERSC).


  1. 1.
    I.I.I. Avignone, Frank T., Steven R. Elliott, Jonathan Engel. Rev. Mod. Phys. 80, 481 (2008). arXiv:0708.1033
  2. 2.
    D.R. Artusa et al., Adv. High Energy Phys., 879871 (2015), doi: 10.1155/2015/879871
  3. 3.
    D.R. Artusa et al., Eur. Phys. J. C 74, 2956 (2014). doi: 10.1140/epjc/s10052-014-2956-6
  4. 4.
    L. Canonica et al., J. Low Temp. Phys. 176, 986–994 (2014). doi: 10.1007/s10909-014-1094-8
  5. 5.
    E. Andreotti et al., Astropart. Phys. 34, 822–831 (2011). doi: 10.1016/j.astropartphys.2011.02.002
  6. 6.
    C. Arnaboldi et al., CUORICINO Collaboration. Phys. Rev. C 78, 035502 (2008). doi: 10.1103/PhysRevC.78.035502. arXiv:0802.3439
  7. 7.
    F. Alessandria et al., Astropart. Phys. 45, 13–22 (2013). doi: 10.1016/j.astropartphys.2013.02.005
  8. 8.
    M. Clemenza et al., Eur. Phys. J. C 71, 1805 (2011). doi: 10.1140/epjc/s10052-011-1805-0
  9. 9.
    E. Buccheri et al., Nucl. Instrum. Methods A 768, 130–140 (2014). doi: 10.1016/j.nima.2014.09.046
  10. 10.
    K. Alfonso et al., Phys. Rev. Lett. 115, 102502 (2015). doi: 10.1103/PhysRevLett.115.102502
  11. 11.
    J. Barea et al., Phys. Rev. C 91, 034304 (2015). doi: 10.1103/PhysRevC.91.034304
  12. 12.
    F. Ŝimkovic et al., Phys. Rev. C 87, 045501 (2013). doi: 10.1103/PhysRevC.87.045501
  13. 13.
    J. Hyvarinen, J. Suhonen, Phys. Rev. C 91, 024613 (2015). doi: 10.1103/PhysRevC.91.024613
  14. 14.
    J. Menendez et al., Nucl. Phys. A 818, 139 (2009). doi: 10.1016/j.nuclphysa.2008.12.005
  15. 15.
    T.R. Rodriguez, G. Martinez-Pinedo, Phys. Rev. Lett. 105, 252503 (2010). doi: 10.1103/PhysRevLett.105.252503
  16. 16.
    J. Barea, J., et al . Phys. Rev. C 87, 014315 (2013). doi: 10.1103/PhysRevC.87.014315

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.INFN, Laboratori Nazionali del Gran SassoAssergiItaly

Personalised recommendations