Advertisement

Journal of Low Temperature Physics

, Volume 184, Issue 3–4, pp 805–810 | Cite as

The Polarbear-2 and the Simons Array Experiments

  • A. SuzukiEmail author
  • P. Ade
  • Y. Akiba
  • C. Aleman
  • K. Arnold
  • C. Baccigalupi
  • B. Barch
  • D. Barron
  • A. Bender
  • D. Boettger
  • J. Borrill
  • S. Chapman
  • Y. Chinone
  • A. Cukierman
  • M. Dobbs
  • A. Ducout
  • R. Dunner
  • T. Elleflot
  • J. Errard
  • G. Fabbian
  • S. Feeney
  • C. Feng
  • T. Fujino
  • G. Fuller
  • A. Gilbert
  • N. Goeckner-Wald
  • J. Groh
  • T. De Haan
  • G. Hall
  • N. Halverson
  • T. Hamada
  • M. Hasegawa
  • K. Hattori
  • M. Hazumi
  • C. Hill
  • W. Holzapfel
  • Y. Hori
  • L. Howe
  • Y. Inoue
  • F. Irie
  • G. Jaehnig
  • A. Jaffe
  • O. Jeong
  • N. Katayama
  • J. Kaufman
  • K. Kazemzadeh
  • B. Keating
  • Z. Kermish
  • R. Keskitalo
  • T. Kisner
  • A. Kusaka
  • M. Le Jeune
  • A. Lee
  • D. Leon
  • E. Linder
  • L. Lowry
  • F. Matsuda
  • T. Matsumura
  • N. Miller
  • K. Mizukami
  • J. Montgomery
  • M. Navaroli
  • H. Nishino
  • J. Peloton
  • D. Poletti
  • G. Puglisi
  • G. Rebeiz
  • C. Raum
  • C. Reichardt
  • P. Richards
  • C. Ross
  • K. Rotermund
  • Y. Segawa
  • B. Sherwin
  • I. Shirley
  • P. Siritanasak
  • N. Stebor
  • R. Stompor
  • J. Suzuki
  • O. Tajima
  • S. Takada
  • S. Takakura
  • S. Takatori
  • A. Tikhomirov
  • T. Tomaru
  • B. Westbrook
  • N. Whitehorn
  • T. Yamashita
  • A. Zahn
  • O. Zahn
Article

Abstract

We present an overview of the design and status of the Polarbear-2 and the Simons Array experiments. Polarbear-2 is a cosmic microwave background polarimetry experiment which aims to characterize the arc-minute angular scale B-mode signal from weak gravitational lensing and search for the degree angular scale B-mode signal from inflationary gravitational waves. The receiver has a 365 mm diameter focal plane cooled to 270 mK. The focal plane is filled with 7588 dichroic lenslet–antenna-coupled polarization sensitive transition edge sensor (TES) bolometric pixels that are sensitive to 95 and 150 GHz bands simultaneously. The TES bolometers are read-out by SQUIDs with 40 channel frequency domain multiplexing. Refractive optical elements are made with high-purity alumina to achieve high optical throughput. The receiver is designed to achieve noise equivalent temperature of 5.8 \(\upmu \)K\(_\mathrm{CMB}\sqrt{s}\) in each frequency band. Polarbear-2 will deploy in 2016 in the Atacama desert in Chile. The Simons Array is a project to further increase sensitivity by deploying three Polarbear-2 type receivers. The Simons Array will cover 95, 150, and 220 GHz frequency bands for foreground control. The Simons Array will be able to constrain tensor-to-scalar ratio and sum of neutrino masses to \(\sigma (r) = 6\times 10^{-3}\) at \(r = 0.1\) and \(\sum m_{\upnu } (\sigma =1)\) to 40 meV.

Keywords

Cosmic microwave background Inflation Gravitational weak lensing Polarization B-mode 

Notes

Acknowledgments

We acknowledge the support from the MEXT Kahenhi Grant 21111002, NSF Grant AST-0618398, NASA Grant NNG06GJ08G, The Simons Foundation, Natural Sciences and Engineering Research Council, Canadian Institute for Advanced Research, and Japan Society for the Promotion of Science, and the CONICYT provided invaluable funding and support. Detectors were fabricated at the Berkeley Marvell Nanofabrication laboratory.

References

  1. 1.
    J. Beringer et al., Review of particle physics (RPP). Phys. Rev. D 86, 010001 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    P.A.R. Ade et al., A measurement of the cosmic microwave background B-mode polarization power spectrum at sub-degree scales with POLARBEAR. Astrophys. J. 794(2), 171 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    P.A.R. Ade et al., Detection of \(B\)-mode polarization at degree angular scales by BICEP2. Phys. Rev. Lett. 112(24), 241101 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    P.A.R. Ade et al., Evidence for gravitational lensing of the cosmic microwave background polarization from cross-correlation with the cosmic infrared background. Phys. Rev. Lett. 112, 131302 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    P.A.R. Ade et al., Measurement of the cosmic microwave background polarization lensing power spectrum with the POLARBEAR experiment. Phys. Rev. Lett. 113, 021301 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    P.A.R. Ade et al., Bicep2/keck array v: Measurements of b-mode polarization at degree angular scales and 150 ghz by the keck array. Astrophys. J. 811(2), 126 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    D. Hanson et al., Detection of B-mode polarization in the cosmic microwave background with data from the south pole telescope. Phys. Rev. Lett. 111(14), 141301 (2013)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    R. Keisler et al., Measurements of sub-degree B-mode polarization in the cosmic microwave background from 100 square degrees of SPTpol data. Astrophys. J. 807(2), 151 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    U. Seljak et al., Signature of gravity waves in the polarization of the microwave background. Phys. Rev. Lett. 78, 2054–2057 (1997)ADSCrossRefGoogle Scholar
  10. 10.
    H. Wayne et al., Mass reconstruction with cmb polarization. Astrophys. J. 574, 566–574 (2002)CrossRefGoogle Scholar
  11. 11.
    P.A.R. Ade et al., Joint analysis of BICEP2/keck array and Planck data. Phys. Rev. Lett. 114, 101301 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    Planck Collaboration. Planck intermediate results. xxx. the angular power spectrum of polarized dust emission at intermediate and high galactic latitudes. A&A (2015)Google Scholar
  13. 13.
    J. Errard et al., Framework for performance forecasting and optimization of cmb \(b\)-mode observations in the presence of astrophysical foregrounds. Phys. Rev. D 84, 063005 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    Yuki Inoue et al., Cryogenic infrared filter made of alumina for use at millimeter wavelength. Appl. Opt. 53(9), 1727–1733 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    Darin Rosen et al., Epoxy-based broadband antireflection coating for millimeter-wave optics. Appl. Opt. 52(33), 8102–8105 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    O. Jeong et al., Broadband plasma sprayed anti-reflection coating for millimeter-wave astrophysics experiments. J. Low Temp. Phys., this Special Issue. doi: 10.1007/s10909-015-1442-3
  17. 17.
    A. Suzuki et al., Multi-chroic dual-polarization bolometric detectors for studies of the cosmic microwave background. J. Low Temp. Phys. 176(5–6), 650–656 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    P. Siritanasak et al., The broadband anti-reflection coated extended hemispherical silicon lenses for polarbear-2 experiment. J. Low Temp. Phys., this Special Issue. doi: 10.1007/s10909-015-1386-7
  19. 19.
    K. Hattori et al., Development of readout electronics for polarbear-2 cosmic microwave background experiment. J. Low Temp. Phys., this Special Issue. doi: 10.1007/s10909-015-1448-x
  20. 20.
    M.A. Dobbs et al., Frequency multiplexed superconducting quantum interference device readout of large bolometer arrays for cosmic microwave background measurements. Rev. Sci. Instrum. 83(7), 073113 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    A.N. Bender et al., Digital frequency domain multiplexing readout electronics for the next generation of millimeter telescopes (2014)Google Scholar
  22. 22.
    K. Rotermund et al., Planar lithographed superconducting lc resonators for frequency-domain multiplexed readout systems. J. Low Temp. Phys., this Special IssueGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • A. Suzuki
    • 1
    • 2
    Email author
  • P. Ade
    • 4
  • Y. Akiba
    • 5
    • 24
  • C. Aleman
    • 6
  • K. Arnold
    • 25
  • C. Baccigalupi
    • 7
  • B. Barch
    • 1
  • D. Barron
    • 1
  • A. Bender
    • 8
  • D. Boettger
    • 13
  • J. Borrill
    • 9
  • S. Chapman
    • 10
  • Y. Chinone
    • 1
  • A. Cukierman
    • 1
  • M. Dobbs
    • 11
  • A. Ducout
    • 12
  • R. Dunner
    • 13
  • T. Elleflot
    • 6
  • J. Errard
    • 27
  • G. Fabbian
    • 7
  • S. Feeney
    • 12
  • C. Feng
    • 14
  • T. Fujino
    • 3
  • G. Fuller
    • 6
  • A. Gilbert
    • 11
  • N. Goeckner-Wald
    • 1
  • J. Groh
    • 1
  • T. De Haan
    • 1
  • G. Hall
    • 1
  • N. Halverson
    • 15
  • T. Hamada
    • 5
  • M. Hasegawa
    • 5
  • K. Hattori
    • 5
  • M. Hazumi
    • 3
    • 5
    • 24
  • C. Hill
    • 1
  • W. Holzapfel
    • 1
  • Y. Hori
    • 1
  • L. Howe
    • 6
  • Y. Inoue
    • 5
    • 24
  • F. Irie
    • 3
  • G. Jaehnig
    • 15
  • A. Jaffe
    • 12
  • O. Jeong
    • 1
  • N. Katayama
    • 3
  • J. Kaufman
    • 6
  • K. Kazemzadeh
    • 6
  • B. Keating
    • 6
  • Z. Kermish
    • 16
  • R. Keskitalo
    • 9
  • T. Kisner
    • 9
  • A. Kusaka
    • 17
  • M. Le Jeune
    • 18
  • A. Lee
    • 1
  • D. Leon
    • 6
  • E. Linder
    • 17
  • L. Lowry
    • 6
  • F. Matsuda
    • 6
  • T. Matsumura
    • 19
  • N. Miller
    • 20
  • K. Mizukami
    • 3
  • J. Montgomery
    • 11
  • M. Navaroli
    • 6
  • H. Nishino
    • 5
  • J. Peloton
    • 18
  • D. Poletti
    • 18
  • G. Puglisi
    • 7
  • G. Rebeiz
    • 21
  • C. Raum
    • 1
  • C. Reichardt
    • 22
  • P. Richards
    • 1
  • C. Ross
    • 10
  • K. Rotermund
    • 10
  • Y. Segawa
    • 5
  • B. Sherwin
    • 17
  • I. Shirley
    • 1
  • P. Siritanasak
    • 6
  • N. Stebor
    • 6
  • R. Stompor
    • 18
  • J. Suzuki
    • 5
  • O. Tajima
    • 5
  • S. Takada
    • 23
  • S. Takakura
    • 5
    • 26
  • S. Takatori
    • 5
  • A. Tikhomirov
    • 10
  • T. Tomaru
    • 5
  • B. Westbrook
    • 1
  • N. Whitehorn
    • 1
  • T. Yamashita
    • 3
  • A. Zahn
    • 6
  • O. Zahn
    • 1
  1. 1.Department of PhysicsUniversity of CaliforniaBerkeleyUSA
  2. 2.Radio Astronomy LaboratoryUniversity of CaliforniaBerkeleyUSA
  3. 3.Kavli IPMU (WPI), UTIASThe University of TokyoChibaJapan
  4. 4.School of Physics and AstronomyCardiff UniversityCardiffUK
  5. 5.High Energy Accelerator Research Organization (KEK)TsukubaJapan
  6. 6.Department of PhysicsUniversity of CaliforniaSan DiegoUSA
  7. 7.International School for Advanced Studies (SISSA)TriesteItaly
  8. 8.Argonne National LaboratoryArgonneUSA
  9. 9.Computational Cosmology CenterLawrence Berkeley National LaboratoryBerkeleyUSA
  10. 10.Department of Physics and Atmospheric ScienceDalhousie UniversityHalifaxCanada
  11. 11.Physics DepartmentMcGill UniversityMontrealCanada
  12. 12.Department of Physics, Blackett LaboratoryImperial College LondonLondonUK
  13. 13.Department of AstronomyPontifica Universidad CatolicaSantiagoChile
  14. 14.Department of Physics and AstronomyUniversity of CaliforniaIrvineUSA
  15. 15.Center for Astrophysics and Space AstronomyUniversity of ColoradoBoulderUSA
  16. 16.Department of PhysicsPrinceton UniversityPrincetonUSA
  17. 17.Physics DivisionLawrence Berkeley National LaboratoryBerkeleyUSA
  18. 18.AstroParticule et CosmologieUniv Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs de Paris, Sorbonne Paris CiteParisFrance
  19. 19.Institute of Space and Astronautical Studies (ISAS)Japan Aerospace Exploration Agency (JAXA)SagamiharaJapan
  20. 20.Observational Cosmology Laboratory, Code 665NASA Goddard Space Flight CenterGreenbeltUSA
  21. 21.Department of Electrical and Computer EngineeringUniversity of CaliforniaSan DiegoUSA
  22. 22.School of PhysicsUniversity of MelbourneParkvilleAustralia
  23. 23.National Institute for Fusion ScienceTokiJapan
  24. 24.SOKENDAI KamiyamaguchiMiuraJapan
  25. 25.Department of PhysicsUniversity of WisconsinMadisonUSA
  26. 26.Department of PhysicsOsaka UniversityOsakaJapan
  27. 27.Institut Lagrange de Paris (ILP)Sorbonne UniversitésParisFrance

Personalised recommendations