Advertisement

Journal of Low Temperature Physics

, Volume 185, Issue 5–6, pp 439–445 | Cite as

Microscopic Derivation of the Ginzburg–Landau Equations for the Periodic Anderson Model in the Coexistence Phase of Superconductivity and Antiferromagnetism

  • V. V. Val’kov
  • A. O. ZlotnikovEmail author
Article

Abstract

On the basis of the periodic Anderson model, the microscopic Ginzburg–Landau equations for heavy-fermion superconductors in the coexistence phase of superconductivity and antiferromagnetism have been derived. The obtained expressions are valid in the vicinity of quantum critical point of heavy-fermion superconductors when the onset temperatures of antiferromagnetism and superconductivity are sufficiently close to each other. It is shown that the formation of antiferromagnetic ordering causes a decrease of the critical temperature of superconducting transition and order parameter in the phase of coexisting superconductivity and antiferromagnetism.

Keywords

Ginzburg–Landau equations Superconductivity Antiferromagnetism Coexistence phase Periodic Anderson model 

Notes

Acknowledgments

This work was supported in part by the Russian Foundation for Basic Research, Grant No. 13-02-00523 and regional Grant Siberia No. 15-42-04372. A.O.Z. acknowledges the support of RF Presidential Grant No. SP-1370.2015.5.

References

  1. 1.
    L.P. Gor’kov, T.K. Melik-Barkhudarov, Sov. Phys. JETP 18, 1031 (1964)Google Scholar
  2. 2.
    K. Scharnberg, R.A. Klemm, Phys. Rev. B 22, 5233 (1980)ADSCrossRefGoogle Scholar
  3. 3.
    C.T. Riek, Th. Wölkhausen, D. Fay, L. Tewordt, Phys. Rev. B 39, 278 (1989)Google Scholar
  4. 4.
    R.O. Zaitsev, Fiz. Tverd. Tela (Leningrad) 30, 1631 (1988)Google Scholar
  5. 5.
    R.O. Zaitsev, Fiz. Tverd. Tela (Leningrad) 31(11), 52 (1989)Google Scholar
  6. 6.
    K. Kuboki, M. Sigrist, J. Phys. Soc. Jpn. 67, 2873 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    V.P. Mineev, T. Champel, Phys. Rev. B 69, 144521 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    K. Kuboki, K. Yano, J. Phys. Soc. Jpn. 81, 064711 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    K. Kuboki, J. Phys. Soc. Jpn. 82, 014701 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    C. Pfleiderer, Rev. Mod. Phys. 81, 1551 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    V.V. Val’kov, A.O. Zlotnikov, JETP Lett. 95, 350 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.L.V. Kirensky Institute of PhysicsKrasnoyarskRussia

Personalised recommendations