Advertisement

Journal of Low Temperature Physics

, Volume 184, Issue 3–4, pp 746–753 | Cite as

BFORE: The B-mode Foreground Experiment

  • Michael D. NiemackEmail author
  • Peter Ade
  • Francesco de Bernardis
  • Francois Boulanger
  • Sean Bryan
  • Mark Devlin
  • Joanna Dunkley
  • Steve Eales
  • Haley Gomez
  • Chris Groppi
  • Shawn Henderson
  • Seth Hillbrand
  • Johannes Hubmayr
  • Philip Mauskopf
  • Jeff McMahon
  • Marc-Antoine Miville-Deschênes
  • Enzo Pascale
  • Giampaolo Pisano
  • Giles Novak
  • Douglas Scott
  • Juan Soler
  • Carole Tucker
Article

Abstract

The B-mode Foreground Experiment (BFORE) is a proposed NASA balloon project designed to make optimal use of the sub-orbital platform by concentrating on three dust foreground bands (270, 350, and 600 GHz) that complement ground-based cosmic microwave background (CMB) programs. BFORE will survey \(\sim \)1/4 of the sky with 1.7–3.7 arcminute resolution, enabling precise characterization of the Galactic dust that now limits constraints on inflation from CMB B-mode polarization measurements. In addition, BFORE’s combination of frequency coverage, large survey area, and angular resolution enables science far beyond the critical goal of measuring foregrounds. BFORE will constrain the velocities of thousands of galaxy clusters, provide a new window on the cosmic infrared background, and probe magnetic fields in the interstellar medium. We review the BFORE science case, timeline, and instrument design, which is based on a compact off-axis telescope coupled to \({>}10,000\) superconducting detectors.

Keywords

Cosmic microwave background Dust Foregrounds Balloons Superconducting detectors Kinematic Sunyaev–Zel’dovich effect 

Notes

Acknowledgments

The development of multichroic detectors and lenses was supported by NASA Grants NNX13AE56G and NNX14AB58G.

References

  1. 1.
    D. Baumann et al., AIP Conference Proceedings, vol. 1141 (2009), p. 10 . doi: 10.1063/1.3160885
  2. 2.
    C.L. Bennet et al., Astrophys. J. Suppl. Ser. 208, 674 (2013). doi: 10.1088/0067-0049/208/2/20 Google Scholar
  3. 3.
    Planck Collaboration XXX, accepted in Astronomy and Astrophysics (2015). arXiv:1409.5738
  4. 4.
    B.T. Draine, A.A. Fraisse, Astrophys. J. 696, 1 (2009). doi: 10.1088/0004-637X/696/1/1 ADSCrossRefGoogle Scholar
  5. 5.
    Planck Collaboration I, accepted in Astronomy and Astrophysics (2015). arXiv:1502.01582
  6. 6.
    P.A.R. Ade et al., Phys. Rev. Lett. 112, 241101 (2014). doi: 10.1103/PhysRevLett.112.241101 ADSCrossRefGoogle Scholar
  7. 7.
    BICEP2/Keck and Planck Collaborations, Phys. Rev. Lett. 114, 101301 (2015). doi: 10.1103/PhysRevLett.114.101301
  8. 8.
    E.D. Kovetz, M. Kamionkowski, Phys. Rev. D 91, 081303 (2015). doi: 10.1103/PhysRevD.91.081303 ADSCrossRefGoogle Scholar
  9. 9.
    B. Reichborn-Kjennerud et al., Proc. SPIE 7741, 77411C (2014). doi: 10.1117/12.857138 CrossRefGoogle Scholar
  10. 10.
    J.P. Filippini et al., Proc. SPIE 7741, 74111N (2010). doi: 10.1117/12.857720 Google Scholar
  11. 11.
    J. Lazear et al., Proc. SPIE 9153, 91531L (2014). doi: 10.1117/12.2056806 CrossRefGoogle Scholar
  12. 12.
    Z. Staniszewski et al., J. Low Temp. Phys. 167, 827 (2012). doi: 10.1007/s10909-012-0510-1 ADSCrossRefGoogle Scholar
  13. 13.
    S. W. Henderson et al., J. Low Temp. Phys. This Special Issue (2015)Google Scholar
  14. 14.
    K. Arnold et al., Proc. SPIE 9153, 91531F (2014). doi: 10.1117/12.2057332 CrossRefGoogle Scholar
  15. 15.
    B.A. Benson et al., Proc. SPIE 9153, 91531P (2014). doi: 10.1117/12.2057305 CrossRefGoogle Scholar
  16. 16.
    C. Armitage-Caplan et al., Mon. Not. R. Astron. Soc. 418, 1498 (2011). doi: 10.1111/j.1365-2966.2011.19307 ADSCrossRefGoogle Scholar
  17. 17.
    P. Predehl et al., Proc. SPIE 9144, 91441T (2014). doi: 10.1117/12.2055426 CrossRefGoogle Scholar
  18. 18.
    Z. Staniszewski et al., Astrophys. J. 701, 32 (2009). doi: 10.1088/0004-637X/701/1/32 ADSCrossRefGoogle Scholar
  19. 19.
    F. Menanteau et al., Astrophys. J. 723, 1523 (2010). doi: 10.1088/0004-637X/722/2/1148 ADSCrossRefGoogle Scholar
  20. 20.
    Planck Collaboration VIII, Astron. Astrophys. 28, A28 (2011). doi: 10.1051/0004-6361/201116459 CrossRefGoogle Scholar
  21. 21.
    N. Hand et al., Phys. Rev. Lett. 109, 041101 (2012). doi: 10.1103/PhysRevLett.109.041101 ADSCrossRefGoogle Scholar
  22. 22.
    B.A. Benson et al., Astrophys. J. 592, 674 (2003). doi: 10.1086/375864 ADSCrossRefGoogle Scholar
  23. 23.
    S. Bhattacharya, A. Kosowsky, Phys. Rev. D 77, 083004 (2008). doi: 10.1103/PhysRevD.77.083004 ADSCrossRefGoogle Scholar
  24. 24.
    E.-M. Mueller, F. de Bernardis, R. Bean, M.D. Niemack, Phys. Rev. D 92, 063501 (2015). doi: 10.1103/PhysRevD.92.063501 ADSCrossRefGoogle Scholar
  25. 25.
    L. Knox, G. Holder, S. Church, Astrophys. J. 612(1), 96 (2004). doi: 10.1086/422447 ADSCrossRefGoogle Scholar
  26. 26.
    P. Hennebelle, E. Falgarone, Astron. Astrophys. Rev. 20, 1 (2012). doi: 10.1007/s00159-012-0055-y CrossRefGoogle Scholar
  27. 27.
    G. Pisano et al., Proc. SPIE 9153, 915317 (2014). doi: 10.1117/12.2056380 CrossRefGoogle Scholar
  28. 28.
    R. Datta et al., J. Low Temp. Phys. 176(5), 670 (2014). doi: 10.1007/s10909-014-1134-4 ADSGoogle Scholar
  29. 29.
    M.D. Niemack et al., J. Low Temp. Phys. 167(5), 917 (2014). doi: 10.1007/s10909-012-0554-2 ADSGoogle Scholar
  30. 30.
    J. Hubmayr et al., Appl. Phys. Lett. 106, 073505 (2015). doi: 10.1063/1.4913418 ADSCrossRefGoogle Scholar
  31. 31.
    R. Duan et al., Proc. SPIE 7741, 77411V (2010). doi: 10.1117/12.856832 CrossRefGoogle Scholar
  32. 32.
    O. Noroozian et al., Appl. Phys. Lett. 103(20), 202602 (2013). doi: 10.1063/1.4829156 ADSCrossRefGoogle Scholar
  33. 33.
    S. Dicker et al., Proc. SPIE 9153, 91530J (2014). doi: 10.1117/12.2056455 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Michael D. Niemack
    • 1
    Email author
  • Peter Ade
    • 2
  • Francesco de Bernardis
    • 1
  • Francois Boulanger
    • 3
  • Sean Bryan
    • 4
  • Mark Devlin
    • 5
  • Joanna Dunkley
    • 6
  • Steve Eales
    • 2
  • Haley Gomez
    • 2
  • Chris Groppi
    • 4
  • Shawn Henderson
    • 1
  • Seth Hillbrand
    • 7
  • Johannes Hubmayr
    • 8
  • Philip Mauskopf
    • 4
  • Jeff McMahon
    • 9
  • Marc-Antoine Miville-Deschênes
    • 3
  • Enzo Pascale
    • 2
  • Giampaolo Pisano
    • 2
  • Giles Novak
    • 10
  • Douglas Scott
    • 11
  • Juan Soler
    • 3
  • Carole Tucker
    • 2
  1. 1.Department of PhysicsCornell UniversityIthacaUSA
  2. 2.School of Physics and AstronomyCardiff UniversityCardiffUK
  3. 3.Institut d’Astrophysique SpatialeCNRS Université Paris-SudOrsayFrance
  4. 4.School of Earth and Space ExplorationArizona State UniversityTempeUSA
  5. 5.Department of Physics and AstronomyUniversity of PennsylvaniaPhiladelphiaUSA
  6. 6.Department of AstrophysicsUniversity of OxfordOxfordUK
  7. 7.Department of Physics and AstronomyCalifornia State UniversitySacramentoUSA
  8. 8.National Institute of Standards and TechnologyBoulderUSA
  9. 9.Department of PhysicsUniversity of MichiganAnn ArborUSA
  10. 10.Center for Interdisciplinary Exploration and Research in Astrophysics and Department of Physics and AstronomyNorthwestern UniversityEvanstonUSA
  11. 11.Department of Physics and AstronomyUniversity of British ColumbiaVancouverCanada

Personalised recommendations