Advertisement

Journal of Low Temperature Physics

, Volume 182, Issue 1–2, pp 28–37 | Cite as

Structural Transitions in a Quasi-1D Wigner Solid on Liquid Helium

  • N. R. Beysengulov
  • D. G. Rees
  • Yu. Lysogorskiy
  • N. K. Galiullin
  • A. S. Vazjukov
  • D. A. Tayurskii
  • K. Kono
Article

Abstract

We present a detailed study of structural transitions of an electron system on liquid helium in quasi-1D confinement geometry. The structural transitions are experimentally observed as current oscillations in transport measurements with changing electrostatic confinement parameters. Finite element modelling and Monte Carlo simulations were used to investigate the electron configuration. With increasing electron density, the single chain of electrons splits into a two-, three- and so on row configuration. A proliferation of defects accompanies each structural transition. We find a good agreement between the observed current modulation and the evolution of the electron row configuration predicted by our calculations.

Keywords

Electrons Helium surface Microchannels Quasi-one dimensional Finite-element modelling Monte Carlo 

Notes

Acknowledgments

This work was supported by JSPS KAKENHI Grant Number 24000007 and was performed according to the Russian Government Program of Competitive Growth of Kazan Federal University.

References

  1. 1.
    E.Y. Andrei, Two-Dimensional Electron Systems on Helium and Other Cryogenic Substrates (Kluwer Academic Publishers, Dordrecht, 1997)CrossRefGoogle Scholar
  2. 2.
    Y.P. Monarkha, K. Kono, Two-Dimensional Coulomb Liquids and Solids (Springer, Berlin, 2004)CrossRefGoogle Scholar
  3. 3.
    K. Shirahama, S. Ito, H. Suto, K. Kono, J. Low Temp. Phys. 101, 433 (1995)ADSCrossRefGoogle Scholar
  4. 4.
    R.S. Crandall, R. Williams, Phys. Lett. A 34, 404 (1971)ADSCrossRefGoogle Scholar
  5. 5.
    C.C. Grimes, G. Adams, Phys. Rev. Lett. 42, 12 (1979)CrossRefGoogle Scholar
  6. 6.
    Y.P. Monarkha, V. Shikin, Zh Eksp, Teor. Phys. 68, 1423 (1975)Google Scholar
  7. 7.
    D.S. Fisher, B.I. Halperin, P.M. Platzman, Phys. Rev. Lett. 42, 798 (1979)ADSCrossRefGoogle Scholar
  8. 8.
    M.I. Dykman, Y.G. Rubo, Phys. Rev. Lett. 78, 25 (1997)CrossRefGoogle Scholar
  9. 9.
    W.F. Vinen, J. Phys. Conf. Ser. 11, 9709 (1999)Google Scholar
  10. 10.
    H. Ikegami, H. Akimoto, K. Kono, Phys. Rev. Lett. 102, 046807 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    V.V. Deshpande, M. Bockrath, L.I. Glazman, A. Yacoby, Nature 464(7286), 209 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    J.S. Meyer, K. Matveev, J. Phys. Condens. Matter 21, 023203 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    D.G. Rees, I. Kuroda, C. Marrache-Kikuchi, M. Hofer, P. Leiderer, K. Kono, Phys. Rev. Lett. 106, 026803 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    D.G. Rees, H. Totsuji, K. Kono, Phys. Rev. Lett. 108, 176801 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    H. Ikegami, H. Akimoto, K. Kono, Phys. Rev. B 82, 201104(R) (2010)ADSCrossRefGoogle Scholar
  16. 16.
    I. Guillamón, R. Córdoba, J. Sesé, D.J. Teresa, Nat. Phys. 10, 851 (2014)CrossRefGoogle Scholar
  17. 17.
    G. Piacente, I. Schweigert, J. Betouras, F. Peeters, Phys. Rev. B 69, 045324 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    H. Ikegami, H. Akimoto, D.G. Rees, K. Kono, Phys. Rev. Lett. 109, 236802 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    D.G. Rees, H. Ikegami, K. Kono, J. Phys. Soc. Jpn. 82, 124602 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    F. Hecht, J. Numer. Math. 20, 251 (2012)MATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    D. Marty, J. Phys. C 19, 6097 (1986)ADSCrossRefGoogle Scholar
  22. 22.
    N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, J. Chem. Phys. 21(6), 1087 (1953)ADSCrossRefGoogle Scholar
  23. 23.
    M. Porto, J. Phys. A 33, 6211 (2000)ADSMATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    A.D. Klironomos, J.S. Meyer, Phys. Rev. B 84, 024117 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • N. R. Beysengulov
    • 1
    • 3
  • D. G. Rees
    • 1
    • 2
  • Yu. Lysogorskiy
    • 3
  • N. K. Galiullin
    • 3
  • A. S. Vazjukov
    • 3
  • D. A. Tayurskii
    • 1
    • 3
  • K. Kono
    • 1
    • 2
    • 3
  1. 1.CEMS, RIKENWakoJapan
  2. 2.NCTU-RIKEN Joint Laboratory, Institute of PhysicsNational Chiao Tung UniversityHsinchuTaiwan
  3. 3.KFU-RIKEN Joint Laboratory, Institute of PhysicsKazan Federal UniversityKazanRussia

Personalised recommendations