Journal of Low Temperature Physics

, Volume 180, Issue 3–4, pp 214–237 | Cite as

On the Paramagnetic Impurity Concentration of Silicate Glasses from Low-Temperature Physics

  • Silvia Bonfanti
  • Giancarlo Jug


The concentration of paramagnetic trace impurities in glasses can be determined via precise SQUID measurements of the sample’s magnetization in a magnetic field. However, the existence of quasi-ordered structural inhomogeneities in the disordered solid causes correlated tunneling currents that can contribute to the magnetization, surprisingly, also at the higher temperatures. We show that taking into account such tunneling systems gives rise to a good agreement between the concentrations extracted from SQUID magnetization and those extracted from low-temperature heat capacity measurements. Without suitable inclusion of such magnetization contribution from the tunneling currents, we find that the concentration of paramagnetic impurities gets considerably over-estimated. This analysis represents a further positive test for the structural inhomogeneity theory of the magnetic effects in the cold glasses.


Low-temperature thermometry Magnetization of non-magnetic glasses Magnetic effects in insulating glasses Low- temperature properties of glasses 



One of us (SB) acknowledges support from the Italian Ministry of Education, University and Research (MIUR) through a Ph.D. Grant of the Progetto Giovani (ambito indagine n.7: materiali avanzati (in particolare ceramici) per applicazioni strutturali), as well as from the Bando VINCI-2014 of the Università Italo-Francese. The other Author (GJ) is grateful to the Laboratoire des Verres et Colloïdes in Montpellier for hospitality and for many stimulating discussions, as well as to the Referees for useful comments on the manuscript. Enlightening conversations with Carlo Dossi and Paolo Sala about glass contaminants are also kindly acknowledged.


  1. 1.
    T. Herrmannsdörfer, R. König, Magnetic impurities in glass and silver powder at milli- and microkelvin temperatures. J. Low Temp. Phys. 118(1–2), 45–57 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    L. Siebert, Ph.D. Thesis, Heidelberg University, 2001,
  3. 3.
    S. Ludwig, P. Nagel, S. Hunklinger, C. Enss, Magnetic field dependent coherent polarization echoes in glasses. J. Low Temp. Phys. 131(1–2), 89–111 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    P. Esquinazi (ed.), Tunneling Systems in Amorphous and Crystalline Solids (Springer, Berlin, 1998)Google Scholar
  5. 5.
    G. Schuster, G. Hechtfischer, D. Buck, W. Hoffmann, Thermometry below 1 K. Rep. Prog. Phys. 57(2), 187–230 (1994)ADSCrossRefGoogle Scholar
  6. 6.
    W.A. Phillips, Two-level States in glasses. Rep. Prog. Phys. 50(12), 1657–1708 (1987)ADSCrossRefGoogle Scholar
  7. 7.
    H.M. Carruzzo, E.R. Grannan, C.C. Yu, Nonequilibrium dielectric behavior in glasses at low temperatures: evidence for interacting defects. Phys. Rev. B 50(10), 6685–6695 (1994)ADSCrossRefGoogle Scholar
  8. 8.
    G. Jug, M. Paliienko, Multilevel tunneling systems and fractal clusters in the low-temperature mixed alkali-silicate glasses. Sci. World J. 2013, 1–20 (2013)CrossRefGoogle Scholar
  9. 9.
    M. Wohlfahrt, P. Strehlow, C. Enss, S. Hunklinger, Magnetic-field effects in non-magnetic glasses. Europhys. Lett. 56, 690–694 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    A. Würger, A. Fleischmann, C. Enss, Dephasing of atomic tunneling by nuclear quadrupoles. Phys. Rev. Lett. 89(23), 37601 (2002)CrossRefGoogle Scholar
  11. 11.
    G. Jug, Theory of the thermal magnetocapacitance of multi-component silicate glasses at low temperature. Phil. Mag. 84(33), 3599–3615 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    A. Borisenko, Hole-compensated Fe\(^{3+}\) impurities in quartz glasses: a contribution to sub-kelvin thermodynamics. J. Phys. 19(41), 416102 (2007)Google Scholar
  13. 13.
    R.W. Simmonds, K.M. Lang, D.A. Hite, S. Nam, D.P. Pappas, J.M. Martinis, Decoherence in josephson phase qubits from junction resonators. Phys. Rev. Lett. 93(7), 077003 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    A. Amir, Y. Oreg, Y. Imry, On relaxations and aging in various glasses. Proc. Nat. Acad. Sci. 109(6), 1850–1855 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    S. Ludwig, D.D. Osheroff, Field-induced structural aging in glasses at ultralow temperatures. Phys. Rev. Lett. 91(10), 105501 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    H. Paik, K.D. Osborn, Reducing quantum-regime Dielectric Loss of Silicon Nitride for Superconducting Quantum Circuits. Appl. Phys. Lett. 96, 072505 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    X. Liu, D.R. Queen, T.H. Metcalf, J.E. Karel, F. Hellman, Hydrogen-free amorphous silicon with no tunneling states. Phys. Rev. Lett. 113, 025503 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    A.M. Zagoskin, S. Ashhab, J.R. Johansson, F. Nori, Quantum two-level systems in josephson junctions as naturally formed qubits. Phys. Rev. Lett. 97, 077001 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    E.-J. Donth, The Glass Transition (Springer, Berlin, 2001)CrossRefGoogle Scholar
  20. 20.
    L. Berthier, G. Biroli, Theoretical perspective on the glass transition and amorphous materials. Rev. Mod. Phys. 83(2), 587–645 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    R.B. Stephens, Intrinsic low-temperature thermal properties of glasses. Phys. Rev. B 13(2), 852 (1976)ADSCrossRefGoogle Scholar
  22. 22.
    K. Vollmayr-Lee, A. Zippelius, Heterogeneities in the glassy state. Phys. Rev. E 72(4), 041507 (2005)ADSCrossRefGoogle Scholar
  23. 23.
    L. Berthier, G. Biroli, J.-P. Bouchaud, L. Cipelletti and W. van Saarloos (eds.): Dynamical Heterogeneities in Glasses, Colloids and Granular Media, (Oxford University press, Oxford, 2011)Google Scholar
  24. 24.
    A.C. Wright, Crystalline-like ordering in melt-quenched network glasses? J. Non-cryst. Solids 401, 4–26 (2014)CrossRefGoogle Scholar
  25. 25.
    M.M.J. Treacy, K.B. Borisenko, The local structure of amorphous silicon. Science 335(6071), 950–953 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    J. Hwang, Z.H. Melgarejo, Y.E. Kalay, I. Kalay, M.J. Kramer, D.S. Stone, P.M. Voyles, Nanoscale structure and structural relaxation in Zr\(_50\)Cu\(_45\)Al\(_5\) bulk metallic glass. Phys. Rev. Lett. 108(19), 195505 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    H. Bach, D. Krause, Analysis of the Composition and Structure of Glass and Glass Ceramics (Springer, New York, 1999)CrossRefGoogle Scholar
  28. 28.
    C.C. Yu, A.J. Leggett, Low temperature properties of amorphous materials: through a glass darkly. Comments Condens. Matter Phys. 14(4), 231–251 (1988)Google Scholar
  29. 29.
    A. Heuer, Properties of a glass-forming system as derived from its potential energy landscape. Phys. Rev. Lett. 78(21), 4051–4054 (1997)ADSCrossRefGoogle Scholar
  30. 30.
    J.A. Sussmann, Electric dipoles due to trapped electrons. Proc. Phys. Soc. 79, 758–774 (1962)zbMATHADSCrossRefGoogle Scholar
  31. 31.
    G. Jug, Multiple-well tunneling model for the magnetic-field effect in ultracold glasses. Phys. Rev. B 79(18), 180201 (2009)ADSCrossRefGoogle Scholar
  32. 32.
    G. Jug, M. Paliienko, S. Bonfanti, The glassy state magnetically viewed from the frozen end. J. Non-Crys. Solids 401, 66–72 (2014)CrossRefGoogle Scholar
  33. 33.
    G. Jug, M. Paliienko, Evidence for a two-component tunnelling mechanism in the multicomponent glasses at low temperatures. Europhys. Lett. 90, 36002 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    A. Churkin, D. Barash, M. Schechter, Non-homogeneity of the density of states of tunneling two-level systems at low energies. Phys. Rev. B 89, 104202 (2014)ADSCrossRefGoogle Scholar
  35. 35.
    A. Abragam, B. Bleaney, The Physical Principles of Electron Paramagnetic Resonance (Clarendon, Oxford, 1970)Google Scholar
  36. 36.
    N.W. Ashcroft, N.D. Mermin, Solid State Physics (Saunders College, Philadelphia, 1976)Google Scholar
  37. 37.
    M. Paliienko: Multiple-welled tunnelling systems in glasses at low temperatures (Ph.D. Thesis, Università degli Studi dell’Insubria, 2011)
  38. 38.
    B. Henderson, G.F. Imbush, Optical Spectroscopy of Inorganic Solids (Oxford University Press, New York, 1989)Google Scholar
  39. 39.
    A. Borisenko, G. Jug, Paramagnetic tunneling systems and their contribution to the polarization echo in glasses. Phys. Rev. Lett. 107, 075501 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Dipartimento di Scienza ed Alta Tecnologia and To.Sca.LabUniversità dell’InsubriaComoItaly
  2. 2.Laboratoire Charles CoulombUniversité de MontpellierMontpellier Cedex 5France
  3. 3.INFN – Sezione di PaviaPaviaItaly
  4. 4.IPCF – Sezione di RomaRomeItaly

Personalised recommendations