Journal of Low Temperature Physics

, Volume 180, Issue 1–2, pp 95–108 | Cite as

A Note on the Propagation of Quantized Vortex Rings Through a Quantum Turbulence Tangle: Energy Transport or Energy Dissipation?

  • Jason Laurie
  • Andrew W. Baggaley


We investigate quantum vortex ring dynamics at scales smaller than the inter-vortex spacing in quantum turbulence. Through geometrical arguments and high-resolution numerical simulations, we examine the validity of simple estimates for the mean free path and the structure of vortex rings post-reconnection. We find that a large proportion of vortex rings remain coherent objects where approximately \(75\,\%\) of their energy is preserved. This leads us to consider the effectiveness of energy transport in turbulent tangles. Moreover, we show that in low density tangles, appropriate for the ultra-quantum regime, ring emission cannot be ruled out as an important mechanism for energy dissipation. However at higher vortex line densities, typically associated with the quasi-classical regime, loop emission is expected to make a negligible contribution to energy dissipation, even allowing for the fact that our work shows rings can survive multiple reconnection events. Hence the Kelvin wave cascade seems the most plausible mechanism leading to energy dissipation.


Vortex rings Superfluid turbulence Vortex reconnections 


  1. 1.
    W.B. Rogers, On the Formation of Rotating Rings by Air and Liquids under Certain Conditions of Discharge (E. Hayes, Invercargill, 1858)Google Scholar
  2. 2.
    K. Shariff, A. Leonard, Annu. Rev. Fluid Mech. 24(1), 235 (1992)CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    D. Kleckner, W.T.M. Irvine, Nat. Phys. 9(4), 253 (2013)CrossRefGoogle Scholar
  4. 4.
    R.J. Donnelly, Quantized Vortices in Helium II (Cambridge University Press, Cambridge, 1991)Google Scholar
  5. 5.
    C.F. Barenghi, L. Skrbek, K.R. Sreenivasan, PNAS 111(Supplement\_1), 4647 (2014)CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    D.I. Bradley, D.O. Clubb, S.N. Fisher, A.M. Guénault, R.P. Haley, C.J. Matthews, G.R. Pickett, V. Tsepelin, K. Zaki, Phys. Rev. Lett. 95(3), 035302 (2005)CrossRefADSGoogle Scholar
  7. 7.
    P.M. Walmsley, A.I. Golov, Phys. Rev. Lett. 100(24), 245301 (2008)CrossRefADSGoogle Scholar
  8. 8.
    L. Kondaurova, S.K. Nemirovskii, Phys. Rev. B 86(13), 134506 (2012)CrossRefADSGoogle Scholar
  9. 9.
    S.K. Nemirovskii, Low Temp. Phys. 39(10), 812 (2013)CrossRefADSGoogle Scholar
  10. 10.
    B.V. Svistunov, Phys. Rev. B 52(5), 3647 (1995)CrossRefADSGoogle Scholar
  11. 11.
    R.M. Kerr, Phys. Rev. Lett. 106(22), 224501 (2011)CrossRefADSGoogle Scholar
  12. 12.
    M. Kursa, K. Bajer, T. Lipniacki, Phys. Rev. B 83(1), 014515 (2011)CrossRefADSGoogle Scholar
  13. 13.
    E. Kozik, B. Svistunov, Phys. Rev. Lett. 92(3), 035301 (2004)CrossRefADSGoogle Scholar
  14. 14.
    V.S. L‘vov, S. Nazarenko, Low Temp. Phys. 36(8), 785 (2010)Google Scholar
  15. 15.
    A.W. Baggaley, J. Laurie, Phys. Rev. B 89(1), 014504 (2014)CrossRefADSGoogle Scholar
  16. 16.
    A.W. Baggaley, L.K. Sherwin, C.F. Barenghi, Y.A. Sergeev, Phys. Rev. B 86(10), 104501 (2012)CrossRefADSGoogle Scholar
  17. 17.
    E. Kozik, B. Svistunov, Phys. Rev. B 77(6), 060502 (2008)CrossRefADSGoogle Scholar
  18. 18.
    A.W. Baggaley, Phys. Fluids 24(5), 055109 (2012)CrossRefADSGoogle Scholar
  19. 19.
    V.S. L‘vov, S.V. Nazarenko, O. Rudenko, Phys. Rev. B 76(2), 024520 (2007)Google Scholar
  20. 20.
    E.V. Kozik, B.V. Svistunov, J. Low Temp. Phys. 156(3–6), 215 (2009)CrossRefADSGoogle Scholar
  21. 21.
    P.M. Walmsley, P.A. Tompsett, D.E. Zmeev, A.I. Golov, Phys. Rev. Lett. 113(12), 125302 (2014)CrossRefADSGoogle Scholar
  22. 22.
    H. Salman, Phys. Rev. Lett. 111(16), 165301 (2013)CrossRefADSGoogle Scholar
  23. 23.
    K.W. Schwarz, Phys. Rev. B 31(9), 5782 (1985)CrossRefADSGoogle Scholar
  24. 24.
    A.W. Baggaley, C.F. Barenghi, Phys. Rev. B 83(13), 134509 (2011)CrossRefADSGoogle Scholar
  25. 25.
    A.W. Baggaley, J. Low Temp. Phys. 168(1–2), 18 (2012)CrossRefADSGoogle Scholar
  26. 26.
    K.W. Schwarz, Phys. Rev. B 38(4), 2398 (1988)CrossRefADSGoogle Scholar
  27. 27.
    L.P. Kondaurova, V.A. Andryuschenko, S.K. Nemirovskii, J. Low Temp. Phys. 150(3–4), 415 (2008)CrossRefADSGoogle Scholar
  28. 28.
    H. Adachi, M. Tsubota, Phys. Rev. B 83(13), 132503 (2011)CrossRefADSGoogle Scholar
  29. 29.
    Laurie J, Baggaley A.W (2015) J. Low Temp. Phys. 1–13Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Physics of Complex SystemsWeizmann Institute of ScienceRehovotIsrael
  2. 2.School of Mathematics and StatisticsNewcastle UniversityNewcastle upon TyneUK

Personalised recommendations