Advertisement

Possible Visualization of a Superfluid Vortex Loop Attached to an Oscillating Beam

Abstract

Visualization using tracer particles is a relatively new tool available for the study of superfluid turbulence and flow, which is applied here to oscillating objects submerged in the liquid. We report observations of a structure seen in videos taken from outside a cryostat filled with superfluid helium at 2 K, which is possibly a vortex loop attached to an oscillator. The feature, which has the shape of an incomplete arch, is visualized due to the presence of solid \(\mathrm{H}_2\) tracer particles and is attached to a beam oscillating at 38 Hz in the liquid. It has been recorded in videos taken at 240 frames per second, fast enough to take \({\sim }6\) images per period. This makes it possible to follow the structure, and to see that it is not rigid. It moves with respect to the oscillator, and its displacement is in phase with the velocity of the moving beam. Analyzing the motion, we come to the conclusion that we may be observing a superfluid vortex attached to the beam and decorated by the hydrogen particles. An alternative model, considering a solid hydrogen filament, has also been analyzed, but the observed phase between the movement of the beam and the filamentary structure is better explained by the superfluid vortex hypothesis.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    R.P. Feynman, Rev. Mod. Phys. 29, 205–212 (1957)

  2. 2.

    L. Onsager, Nuovo Cimento 6, 249–250 (1949)

  3. 3.

    W. Vinen, Proc. R. Soc. Lond. A 260, 218–236 (1961)

  4. 4.

    G. Bewley, D. Lathrop, K. Sreenivasan, Nature 441, 588–588 (2006)

  5. 5.

    G. Bewley, Cryogenics 49, 549–553 (2009)

  6. 6.

    G. Bewley, K. Sreenivasan, D. Lathrop, Exp. Fluids 44, 887–896 (2008)

  7. 7.

    E. Fonda, D.P. Meichle, N.T. Ouellette, S. Hormoz, D.P. Lathrop, Proc. Natl. Acad. Sci. 111, 4707–4710 (2014)

  8. 8.

    M. La Mantia, L. Skrbek, EPL (Europhys. Lett.) 105, 46002 (2014)

  9. 9.

    M. La Mantia, D. Duda, M. Rotter, L. Skrbek, Proc. IUTAM 9, 79–85 (2013)

  10. 10.

    M. Paoletti, M. Fisher, K. Sreenivasan, D. Lathrop, Phys. Rev. Lett. 101, 154501 (2008)

  11. 11.

    W. Guo, M. La Mantia, D.P. Lathrop, S.W. Van Sciver, Proc. Natl. Acad. Sci. 111, 4653–4658 (2014)

  12. 12.

    E. Zemma, J. Luzuriaga, J. Low Temp. Phys. 173, 71–79 (2013)

  13. 13.

    W. Vinen, J. Low Temp. Phys. 161, 419–444 (2010)

  14. 14.

    W.F. Vinen, L. Skrbek, Proc. Natl. Acad. Sci. 111, 4699–4706 (2014)

  15. 15.

    R. Goto, S. Fujiyama, H. Yano, Y. Nago, N. Hashimoto, K. Obara, O. Ishikawa, M. Tsubota, T. Hata, Phys. Rev. Lett. 100(4), 045301 (2008)

  16. 16.

    R. Hänninen, M. Tsubota, W.F. Vinen, Phys. Rev. B 75(6), 064502 (2007)

  17. 17.

    S. Godfrey, D. Samuels, J. Low Temp. Phys. 125, 69–85 (2001)

  18. 18.

    S.P. Godfrey, D.C. Samuels, Phys. Rev. B 61, 4190 (2000)

  19. 19.

    R. Penney, T.K. Hunt, Phys. Rev. 169(1), 228–228 (1968)

  20. 20.

    K. Schwarz, Phys. Rev. B 31, 5782 (1985)

  21. 21.

    E.B. Gordon, R. Nishida, R. Nomura, Y. Okuda, JETP Lett. 85, 581–584 (2007)

  22. 22.

    E. Gordon, Y. Okuda, Low Temp. Phys. 35, 209–213 (2009)

  23. 23.

    K. Schwarz, Phys. Rev. B 38, 2398 (1988)

  24. 24.

    G.P. Bewley, K.R. Sreenivasan, J. Low Temp. Phys. 156, 84–94 (2009)

Download references

Acknowledgments

This work was partially supported by 06/C432 Grant from U.N. Cuyo and CONICET-Czech Academy of Sciences Scientific Cooperation agreement. J. L. would like to thank S. N. Fisher for a helpful discussion.

Author information

Correspondence to E. Zemma.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mpg 486 KB)

Supplementary material 2 (mpg 240 KB)

Supplementary material 3 (mpg 260 KB)

Supplementary material 1 (mpg 486 KB)

Supplementary material 2 (mpg 240 KB)

Supplementary material 3 (mpg 260 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zemma, E., Tsubota, M. & Luzuriaga, J. Possible Visualization of a Superfluid Vortex Loop Attached to an Oscillating Beam. J Low Temp Phys 179, 310–319 (2015). https://doi.org/10.1007/s10909-015-1282-1

Download citation

Keywords

  • Quantum fluids
  • Superfluid helium
  • Flow visualization
  • Vortex loops