Journal of Low Temperature Physics

, Volume 179, Issue 3–4, pp 237–250 | Cite as

Highly Anisotropic Parallel Conduction in the Stepped Substrate of Epitaxial Graphene Grown on Vicinal SiC

  • Akira Endo
  • Fumio Komori
  • Kouhei Morita
  • Takashi Kajiwara
  • Satoru Tanaka
Article

Abstract

We report highly anisotropic appearance of the quantum Hall effect (QHE) in epitaxial single-layer graphene grown on a vicinal SiC(0001) substrate. Well-developed QHE with zero resistance manifests itself for the current along the steps, whereas the QHE is obscured by pronounced positive magnetoresistance with quadratic magnetic-field dependence for the current across the steps. The latter, as well as the small slope of the Hall resistance, implies the presence of parallel conduction due to remnant carriers in the SiC substrate, albeit with seeming inconsistency with the zero resistance observed for the former current direction. We interpret the anisotropic behavior by assuming that the parallel conduction is sizable along the steps but is virtually prohibited across the steps.

Keywords

Epitaxial graphene Vicinal surface Quantum Hall effect Parallel conduction Weak localization 

Notes

Acknowledgments

The authors acknowledge Y. Iye for discussion. This work was supported in part by JSPS KAKENHI Grant Number 26400311 and by MEXT KAKENHI Grant Number 2506.

References

  1. 1.
    K.v. Klitzing, G. Dorda, M. Pepper, Phys. Rev. Lett. 45, 494 (1980)Google Scholar
  2. 2.
    E. Schubert, K. Ploog, H. Dämbkes, K. Heime, Appl. Phys. A 33, 63 (1984)CrossRefADSGoogle Scholar
  3. 3.
    S. Luryi, A. Kastalsky, Appl. Phys. Lett. 45, 164 (1984)CrossRefADSGoogle Scholar
  4. 4.
    M.J. Kane, N. Apsley, D.A. Anderson, L.L. Taylor, T. Kerr, J. Phys. C: Solid State Phys. 18, 5629 (1985)CrossRefADSGoogle Scholar
  5. 5.
    D.A. Syphers, K.P. Martin, R.J. Higgins, Appl. Phys. Lett. 49, 534 (1986)CrossRefADSGoogle Scholar
  6. 6.
    M. Grayson, F. Fischer, J. Appl. Phys. 98, 013709 (2005)CrossRefADSGoogle Scholar
  7. 7.
    W.A. de Heer, C. Berger, X. Wu, P.N. First, E.H. Conrad, X. Li, T. Li, M. Sprinkle, J. Hass, M.L. Sadowski, M. Potemski, G. Martinez, Solid State Commun. 143, 92 (2007)CrossRefADSGoogle Scholar
  8. 8.
    S. Tanaka, K. Morita, H. Hibino, Phys. Rev. B 81, 041406 (2010)CrossRefADSGoogle Scholar
  9. 9.
    K. Nakatsuji, T. Yoshimura, F. Komori, K. Morita, S. Tanaka, Phys. Rev. B 85, 195416 (2012)CrossRefADSGoogle Scholar
  10. 10.
    D.S. Lee, C. Riedl, B. Krauss, K. von Klitzing, U. Starke, J.H. Smet, Nano Lett. 8, 4320 (2008)CrossRefADSGoogle Scholar
  11. 11.
    K. Nakatsuji, Y. Shibata, R. Niikura, F. Komori, K. Morita, S. Tanaka, Phys. Rev. B 82, 045428 (2010)CrossRefADSGoogle Scholar
  12. 12.
    H. Hibino, H. Kageshima, M. Nagase, J. Phys. D: Appl. Phys. 43, 374005 (2010)CrossRefGoogle Scholar
  13. 13.
    M. Furlan, Phys. Rev. B 57, 14818 (1998)CrossRefADSGoogle Scholar
  14. 14.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438, 197 (2005)CrossRefADSGoogle Scholar
  15. 15.
    T. Shen, J.J. Gu, M. Xu, Y.Q. Wu, M.L. Bolen, M.A. Capano, L.W. Engel, P.D. Ye, Appl. Phys. Lett. 95, 172105 (2009)CrossRefADSGoogle Scholar
  16. 16.
    X. Wu, Y. Hu, M. Ruan, N.K. Madiomanana, J. Hankinson, M. Sprinkle, C. Berger, W.A. de Heer, Appl. Phys. Lett. 95, 223108 (2009)CrossRefADSGoogle Scholar
  17. 17.
    J. Jobst, D. Waldmann, F. Speck, R. Hirner, D.K. Maude, T. Seyller, H.B. Weber, Phys. Rev. B 81, 195434 (2010)CrossRefADSGoogle Scholar
  18. 18.
    A. Tzalenchuk, S. Lara-Avila, A. Kalaboukhov, S. Paolillo, M. Syväjärvi, R. Yakimova, O. Kazakova, T.J.B.M. Janssen, V. Fal’ko, S. Kubatkin, Nature Nanotech. 5, 186 (2010)CrossRefADSGoogle Scholar
  19. 19.
    S. Tanabe, Y. Sekine, H. Kageshima, M. Nagase, H. Hibino, Appl. Phys. Express 3, 075102 (2010)CrossRefADSGoogle Scholar
  20. 20.
    Y. Zhang, Z. Jiang, J.P. Small, M.S. Purewal, Y.W. Tan, M. Fazlollahi, J.D. Chudow, J.A. Jaszczak, H.L. Stormer, P. Kim, Phys. Rev. Lett. 96, 136806 (2006)CrossRefADSGoogle Scholar
  21. 21.
    A.F. Young, C.R. Dean, L. Wang, H. Ren, P. Cadden-Zimansky, K. Watanabe, T. Taniguchi, J. Hone, K.L. Shepard, P. Kim, Nature Phys. 8, 550 (2012)CrossRefADSGoogle Scholar
  22. 22.
    T.J.B.M. Janssen, A. Tzalenchuk, R. Yakimova, S. Kubatkin, S. Lara-Avila, S. Kopylov, V.I. Fal’ko, Phys. Rev. B 83, 233402 (2011)CrossRefADSGoogle Scholar
  23. 23.
    E. McCann, K. Kechedzhi, V.I. Fal’ko, H. Suzuura, T. Ando, B.L. Altshuler, Phys. Rev. Lett. 97, 146805 (2006)CrossRefADSGoogle Scholar
  24. 24.
    X. Wu, X. Li, Z. Song, C. Berger, W.A. de Heer, Phys. Rev. Lett. 98, 136801 (2007)CrossRefADSGoogle Scholar
  25. 25.
    T. Schumann, K.J. Friedland, M.H. Oliveira, A. Tahraoui, J.M.J. Lopes, H. Riechert, Phys. Rev. B 85, 235402 (2012)CrossRefADSGoogle Scholar
  26. 26.
    S.H. Simon, Phys. Rev. Lett. 83, 4223 (1999)CrossRefADSGoogle Scholar
  27. 27.
    A. Endo, Y. Iye, J. Phys. Soc. Jpn. 71, 2067 (2002)CrossRefADSGoogle Scholar
  28. 28.
    N.H. Shon, T. Ando, J. Phys. Soc. Jpn 67, 2421 (1998)CrossRefADSGoogle Scholar
  29. 29.
    A. Endo, N. Hatano, H. Nakamura, R. Shirasaki, J. Phys.: Condens. Matter 21, 345803 (2009)Google Scholar
  30. 30.
    F. Guinea, M.I. Katsnelson, A.K. Geim, Nature Phys. 6, 30 (2010)CrossRefADSGoogle Scholar
  31. 31.
    L. Meng, W.Y. He, H. Zheng, M. Liu, H. Yan, W. Yan, Z.D. Chu, K. Bai, R.F. Dou, Y. Zhang, Z. Liu, J.C. Nie, L. He, Phys. Rev. B 87, 205405 (2013)CrossRefADSGoogle Scholar
  32. 32.
    S. Odaka, H. Miyazaki, S.L. Li, A. Kanda, K. Morita, S. Tanaka, Y. Miyata, H. Kataura, K. Tsukagoshi, Y. Aoyagi, Appl. Phys. Lett. 96, 062111 (2010)CrossRefADSGoogle Scholar
  33. 33.
    B. Jouault, B. Jabakhanji, N. Camara, W. Desrat, A. Tiberj, J.R. Huntzinger, C. Consejo, A. Caboni, P. Godignon, Y. Kopelevich, J. Camassel, Phys. Rev. B 82, 085438 (2010)CrossRefADSGoogle Scholar
  34. 34.
    M.K. Yakes, D. Gunlycke, J.L. Tedesco, P.M. Campbell, R.L. Myers-Ward, C.R. Eddy, D.K. Gaskill, P.E. Sheehan, A.R. Laracuente, Nano Lett. 10, 1559 (2010)CrossRefADSGoogle Scholar
  35. 35.
    S.H. Ji, J.B. Hannon, R.M. Tromp, V. Perebeinos, J. Tersoff, F.M. Ross, Nature Mater. 11, 114 (2012)CrossRefADSGoogle Scholar
  36. 36.
    K.W. Clark, X.G. Zhang, I.V. Vlassiouk, G. He, R.M. Feenstra, A.P. Li, ACS Nano 7, 7956 (2013)CrossRefGoogle Scholar
  37. 37.
    F.V. Tikhonenko, A.A. Kozikov, A.K. Savchenko, R.V. Gorbachev, Phys. Rev. Lett. 103, 226801 (2009)CrossRefADSGoogle Scholar
  38. 38.
    B. Jouault, B. Jabakhanji, N. Camara, W. Desrat, C. Consejo, J. Camassel, Phys. Rev. B 83, 195417 (2011)CrossRefADSGoogle Scholar
  39. 39.
    F.V. Tikhonenko, D.W. Horsell, R.V. Gorbachev, A.K. Savchenko, Phys. Rev. Lett. 100, 056802 (2008)CrossRefADSGoogle Scholar
  40. 40.
    H. Fukuyama, E. Abrahams, Phys. Rev. B 27, 5976 (1983)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Akira Endo
    • 1
  • Fumio Komori
    • 1
  • Kouhei Morita
    • 2
  • Takashi Kajiwara
    • 2
  • Satoru Tanaka
    • 2
  1. 1.Institute for Solid State PhysicsUniversity of TokyoKashiwaJapan
  2. 2.Department of Applied Quantum Physics and Nuclear EngineeringKyushu UniversityFukuokaJapan

Personalised recommendations