Journal of Low Temperature Physics

, Volume 179, Issue 3–4, pp 142–157 | Cite as

Stationary Vortices and Pair Currents in a Trapped Fermion Superfluid

  • P. CapuzziEmail author
  • E. S. Hernández
  • L. Szybisz


We examine the effects of stationary vortices in superfluid \(^6\)Li atoms at zero temperature in the frame of the recently developed fluiddynamical scheme, that includes the pair density and its associated pair current and pair kinetic energy in addition to the fields appearing in the hydrodynamical description of normal fluids. In this frame, the presence of any particle velocity field gives rise to the appearance of a pair current. As an illustration, we consider a stationary vortex with cylindrical geometry in an unpolarized fluid, and examine the effects of the rotational velocity field on the spatial structure of the equilibrium gap and the profiles of the pair current. We show that the latter is intrinsically complex and its imaginary part is the source of a radial drift for the velocity field. We discuss the consequences on the stationary regime.


Trapped superfluid Vortex BCS–BEC 



This work was performed under grants PIP 0546 from CONICET, Argentina, PICT 2008-0682 from ANPCYT, Argentina and UBACYT 01/K156 from University of Buenos Aires.


  1. 1.
    D. Vollhardt, P. Wölfle, The Superfluid Phases of Helium 3 (Taylor and Francis, London, 1990)Google Scholar
  2. 2.
    R.J. Donnelly, Quantized Vortices in Helium II (Cambridge University Press, Cambridge, 1991)Google Scholar
  3. 3.
    C.F. Barenghi, Quantized Vortex Dynamics and Superfluid Turbulence (Springer, New York, 2001)zbMATHGoogle Scholar
  4. 4.
    M.W. Zwierlein, J.R. Abo-shaer, A. Schirotzek, C.H. Schunck, W. Ketterle, Nature 435, 1035 (2005)CrossRefGoogle Scholar
  5. 5.
    M.C. Cross, J. Low Temp. Phys. 21, 525 (1975)CrossRefADSGoogle Scholar
  6. 6.
    M.C. Cross, J. Low Temp. Phys. 26, 165 (1977)CrossRefADSGoogle Scholar
  7. 7.
    C.R. Hu, W.M. Saslow, Phys. Rev. Lett. 38, 605 (1977)CrossRefADSGoogle Scholar
  8. 8.
    N.D. Mermin, P. Muzikar, Phys. Rev. B 21, 980 (1980)CrossRefADSGoogle Scholar
  9. 9.
    H.E. Hall, Phys. Rev. Lett. 54, 205 (1985)CrossRefADSGoogle Scholar
  10. 10.
    F. Gaitan, Ann. Phys. 235, 390 (1994)CrossRefADSGoogle Scholar
  11. 11.
    P. Nozières, D. Pines, The Theory of Quantum Liquids: Superfluid Bose Liquids (Addison Wesley, New York, 1990)Google Scholar
  12. 12.
    F. Dalfovo, S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 71, 463 (1999)CrossRefADSGoogle Scholar
  13. 13.
    P. Ring, P. Schuck, The Nuclear Many Body Problem (Springer, Berlin, 1980)CrossRefGoogle Scholar
  14. 14.
    M. Di Toro, V.M. Kolomietz, Z. Phys. A 328, 285 (1987)ADSGoogle Scholar
  15. 15.
    P. Capuzzi, E.S. Hernández, L. Szybisz, Phys. Rev. A 78, 043619 (2008)CrossRefADSGoogle Scholar
  16. 16.
    P.W. Anderson, Phys. Rev. 112, 1900 (1958)CrossRefADSMathSciNetGoogle Scholar
  17. 17.
    N.N. Bogoliubov, Sov. Phys. JETP 34, 41 (1958)MathSciNetGoogle Scholar
  18. 18.
    E.S. Hernández, P. Capuzzi, L. Szybisz, J. Low Temp. Phys. 162, 274 (2011)CrossRefADSGoogle Scholar
  19. 19.
    P. Capuzzi, E.S. Hernández, L. Szybisz, J. Low Temp. Phys. 166, 242 (2012)CrossRefADSGoogle Scholar
  20. 20.
    P. Capuzzi, E.S. Hernández, L. Szybisz, J. Low Temp. Phys 169, 362 (2013)CrossRefADSGoogle Scholar
  21. 21.
    S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 80, 1215 (2008)CrossRefADSGoogle Scholar
  22. 22.
    P. Capuzzi, E.S. Hernández, L. Szybisz, Eur. Phys. J. D 60, 347 (2010)CrossRefADSGoogle Scholar
  23. 23.
    E.S. Hernández, P. Capuzzi, L. Szybisz, J. Low Temp. Phys. 162, 281 (2011)CrossRefADSGoogle Scholar
  24. 24.
    W.D. Phillips, Rev. Mod. Phys. 70, 721 (1998)CrossRefADSGoogle Scholar
  25. 25.
    B. DeMarco, D.S. Jin, Science 225, 5434 (1999)Google Scholar
  26. 26.
    C.N. Cohen-Tannoudji, Rev. Mod. Phys. 70, 707 (1998)CrossRefADSGoogle Scholar
  27. 27.
    R. Sensarma, M. Randeria, T.-L. Ho, Phys. Rev. Lett. 96, 090403 (2006)CrossRefADSGoogle Scholar
  28. 28.
    N. Fukushima, Y. Ohashi, E. Taylor, A. Griffin, Phys. Rev. A 75, 033609 (2007)CrossRefADSGoogle Scholar
  29. 29.
    S. Simonucci, P. Pieri, G.C. Strinati, Phys. Rev. B 87, 214507 (2013)CrossRefADSGoogle Scholar
  30. 30.
    T. Papenbrock, G.F. Bertsch, Phys. Rev. C 59, 2052 (1999)CrossRefADSGoogle Scholar
  31. 31.
    P.G. De Gennes, Superconductivity of Metals and Alloys (Westview Press, Boulder, 1999)Google Scholar
  32. 32.
    E.R.I. Abraham, W.I. McAlexander, J.M. Gerton, R.G. Hulet, R. Ct, A. Dalgarno, Phys. Rev. A 55, R3299 (1997)CrossRefADSGoogle Scholar
  33. 33.
    C.H. Schunck, M.W. Zwierlein, A. Schirotzek, W. Ketterle, Phys. Rev. Lett. 98, 050404 (2007)CrossRefADSGoogle Scholar
  34. 34.
    G. Tonini, F. Werner, Y. Castin, Eur. Phys. J. D 39, 283 (2006)CrossRefADSGoogle Scholar
  35. 35.
    M. Toreblad, M. Borgh, M. Koskinen, M. Manninen, S.M. Reimann, Phys. Rev. Lett. 93, 090407 (2004)CrossRefADSGoogle Scholar
  36. 36.
    S.M. Reinmann, M. Koskinen, Y. Yu, M. Mannien, Phys. Rev. A 74, 043603 (2006)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Departamento de Física, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
  2. 2.Instituto de Física de Buenos AiresConsejo Nacional de Investigaciones Científicas y TécnicasBuenos AiresArgentina
  3. 3.Consejo Nacional de Investigaciones Científicas y TécnicasBuenos AiresArgentina
  4. 4.Comisión Nacional de Energía AtómicaBuenos AiresArgentina

Personalised recommendations