Journal of Low Temperature Physics

, Volume 180, Issue 1–2, pp 82–94 | Cite as

Reconnection Dynamics and Mutual Friction in Quantum Turbulence

Article
  • 127 Downloads

Abstract

We investigate the behaviour of the mutual friction force in finite temperature quantum turbulence in \(^4\)He, paying particular attention to the role of quantized vortex reconnections. Through the use of the vortex filament model, we produce three experimentally relevant types of vortex tangles in steady-state conditions, and examine through statistical analysis, how local properties of the tangle influence the mutual friction force. Finally, by monitoring reconnection events, we present evidence to indicate that vortex reconnections are the dominant mechanism for producing areas of high curvature and velocity leading to regions of high mutual friction, particularly for homogeneous and isotropic vortex tangles.

Keywords

Quantum turbulence Mutual friction Quantum vortices  Vortex reconnections 

Notes

Acknowledgments

We would like to thank Sergey Nazarenko for the initial discussions associated to this work, and Risto Hänninen for fruitful communications.

References

  1. 1.
    L. Tisza, Phys. Rev. 72(9), 838 (1947). doi:10.1103/PhysRev.72.838 CrossRefADSGoogle Scholar
  2. 2.
    L. Landau, Phys. Rev. 60(4), 356 (1941). doi:10.1103/PhysRev.60.356 CrossRefADSMATHGoogle Scholar
  3. 3.
    L. Landau, Phys. Rev. 75(5), 884 (1949). doi:10.1103/PhysRev.75.884 CrossRefADSGoogle Scholar
  4. 4.
    W.F. Vinen, J.J. Niemela, J. Low Temp. Phys. 128(5–6), 167 (2002). doi:10.1023/A:1019695418590 CrossRefADSGoogle Scholar
  5. 5.
    W.F. Vinen, J. Low Temp. Phys. 145(1–4), 7 (2006). doi:10.1007/s10909-006-9240-6 CrossRefADSGoogle Scholar
  6. 6.
    U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov (Cambridge University Press, Cambridge, 1995)MATHGoogle Scholar
  7. 7.
    A.W. Baggaley, Phys. Fluids 24(5), 055109 (2012). doi:10.1063/1.4719158 CrossRefADSGoogle Scholar
  8. 8.
    A.W. Baggaley, J. Laurie, C.F. Barenghi, Phys. Rev. Lett. 109(20), 205304 (2012). doi:10.1103/PhysRevLett.109.205304 CrossRefADSGoogle Scholar
  9. 9.
    H. Adachi, S. Fujiyama, M. Tsubota, Phys. Rev. B 81(10), 104511 (2010). doi:10.1103/PhysRevB.81.104511 CrossRefADSGoogle Scholar
  10. 10.
    H.E. Hall, W.F. Vinen, Proc. R. Soc. Lond. A 238(1213), 215 (1956). doi:10.1098/rspa.1956.0215 CrossRefADSMATHGoogle Scholar
  11. 11.
    I. Bekarevich, I. Khalatnikov, J. Exp. Theor. Phys. 13, 643 (1961)Google Scholar
  12. 12.
    K.L. Henderson, C.F. Barenghi, C.A. Jones, J. Fluid Mech. 283, 329 (1995). doi:10.1017/S0022112095002345 CrossRefADSMATHGoogle Scholar
  13. 13.
    P.E. Roche, C.F. Barenghi, E. Leveque, EPL 87(5), 54006 (2009). doi:10.1209/0295-5075/87/54006 CrossRefADSGoogle Scholar
  14. 14.
    G.P. Bewley, M.S. Paoletti, K.R. Sreenivasan, D.P. Lathrop, PNAS 105(37), 13707 (2008). doi:10.1073/pnas.0806002105 CrossRefADSGoogle Scholar
  15. 15.
    L. Skrbek, K.R. Sreenivasan, Phys. Fluids 24(1), 011301 (2012). doi:10.1063/1.3678335 CrossRefADSGoogle Scholar
  16. 16.
    D. Kivotides, C.F. Barenghi, D.C. Samuels, Science 290(5492), 777 (2000). doi:10.1126/science.290.5492.777 CrossRefADSGoogle Scholar
  17. 17.
    D. Kivotides, C.F. Barenghi, D.C. Samuels, EPL 54(6), 774 (2001). doi:10.1209/epl/i2001-00321-x CrossRefADSGoogle Scholar
  18. 18.
    R. Hänninen, Phys. Rev. B 88(5), 054511 (2013). doi:10.1103/PhysRevB.88.054511 CrossRefADSGoogle Scholar
  19. 19.
    K.W. Schwarz, Phys. Rev. B 31(9), 5782 (1985). doi:10.1103/PhysRevB.31.5782 CrossRefADSGoogle Scholar
  20. 20.
    P.G. Saffman, Vortex Dynamics (Cambridge University Press, Cambridge, 1992)MATHGoogle Scholar
  21. 21.
    R.J. Donnelly, C.F. Barenghi, J. Phys. Chem. Ref. Data 27(6), 1217 (1998). doi:10.1063/1.556028 CrossRefADSGoogle Scholar
  22. 22.
    O.C. Idowu, D. Kivotides, C.F. Barenghi, D.C. Samuels, J. Low Temp. Phys. 120(3–4), 269 (2000). doi:10.1023/A:1004641912850 CrossRefADSGoogle Scholar
  23. 23.
    A.W. Baggaley, C.F. Barenghi, Phys. Rev. B 84(2), 020504 (2011). doi:10.1103/PhysRevB.84.020504 CrossRefADSGoogle Scholar
  24. 24.
    A.W. Baggaley, C.F. Barenghi, J. Low Temp. Phys. 166(1–2), 3 (2012). doi:10.1007/s10909-011-0405-6 CrossRefADSGoogle Scholar
  25. 25.
    Y. Li, E. Perlman, M. Wan, Y. Yang, C. Meneveau, R. Burns, S. Chen, A. Szalay, G. Eyink, J. Turbulence p. N31 (2008). doi:10.1080/14685240802376389
  26. 26.
    D. Kivotides, Phys. Rev. Lett. 96(17), 175301 (2006). doi:10.1103/PhysRevLett.96.175301 CrossRefADSGoogle Scholar
  27. 27.
    V.S. L’vov, S.V. Nazarenko, O. Rudenko, Phys. Rev. B 76(2), 024520 (2007). doi:10.1103/PhysRevB.76.024520
  28. 28.
    B.W. Silverman, Density Estimation for Statistics and Data Analysis (CRC Press, Boca Raton, 1986)CrossRefMATHGoogle Scholar
  29. 29.
    A.W. Baggaley, J. Laurie, J. Low Temp. Phys. 178(1–2), 35 (2015). doi:10.1007/s10909-014-1226-1
  30. 30.
    D.R. Poole, H. Scoffield, C.F. Barenghi, D.C. Samuels, J. Low Temp. Phys. 132(1–2), 97 (2003). doi:10.1023/A:1023797226059 CrossRefADSGoogle Scholar
  31. 31.
    J.T. Tough, in Progress in Low Temperature Physics, vol. 8, ed. by D.F. Brewer (Elsevier, Amsterdam, 1982), pp. 133–219Google Scholar
  32. 32.
    M.S. Paoletti, M.E. Fisher, K.R. Sreenivasan, D.P. Lathrop, Phys. Rev. Lett. 101(15), 154501 (2008). doi:10.1103/PhysRevLett.101.154501 CrossRefADSGoogle Scholar
  33. 33.
    M. La Mantia, D. Duda, M. Rotter, L. Skrbek, J. Fluid Mech. 717 (2013). doi:10.1017/jfm.2013.31
  34. 34.
    A. Vincent, M. Meneguzzi, J. Fluid Mech. 225, 1 (1991). doi:10.1017/S0022112091001957 CrossRefADSMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Physics of Complex SystemsWeizmann Institute of ScienceRehovotIsrael
  2. 2.School of Mathematics and StatisticsUniversity of GlasgowGlasgowUK

Personalised recommendations