Journal of Low Temperature Physics

, Volume 178, Issue 1–2, pp 35–52 | Cite as

Thermal Counterflow in a Periodic Channel with Solid Boundaries

Article

Abstract

We perform numerical simulations of finite temperature quantum turbulence produced through thermal counterflow in superfluid \(^{4}\)He, using the vortex filament model. We investigate the effects of solid boundaries along one of the Cartesian directions, assuming a laminar normal fluid with a Poiseuille velocity profile, whilst varying the temperature and the normal fluid velocity. We analyze the distribution of the quantized vortices, reconnection rates, and quantized vorticity production as a function of the wall-normal direction. We find that the quantized vortex lines tend to concentrate close to the solid boundaries with their position depending only on temperature and not on the counterflow velocity. We offer an explanation of this phenomenon by considering the balance of two competing effects, namely the rate of turbulent diffusion of an isotropic tangle near the boundaries and the rate of quantized vorticity production at the center. Moreover, this yields the observed scaling of the position of the peak vortex line density with the mutual friction parameter. Finally, we provide evidence that upon the transition from laminar to turbulent normal fluid flow, there is a dramatic increase in the homogeneity of the tangle, which could be used as an indirect measure of the transition to turbulence in the normal fluid component for experiments.

Keywords

Superfluidity Quantized vortices Thermal counterflow  Transition to turbulence 

Notes

Acknowledgments

We would like to acknowledge Jeremie Bec and Risto Hänninen for helpful discussions. This work was supported by the Carnegie Trust.

References

  1. 1.
    P.G. Saffman, Vortex Dynamics (Cambridge University Press, Cambridge, 1992)MATHGoogle Scholar
  2. 2.
    W.F. Vinen, Proc. R. Soc. A 240(1220), 114 (1957). doi:10.1098/rspa.1957.0071 ADSCrossRefGoogle Scholar
  3. 3.
    W.F. Vinen, Proc. R. Soc. A 240(1220), 128 (1957). doi:10.1098/rspa.1957.0072 ADSCrossRefGoogle Scholar
  4. 4.
    W.F. Vinen, Proc. R. Soc. A 242(1231), 493 (1957). doi:10.1098/rspa.1957.0191 ADSCrossRefGoogle Scholar
  5. 5.
    W.F. Vinen, Proc. R. Soc. A 243(1234), 400 (1958). doi:10.1098/rspa.1958.0007 ADSCrossRefGoogle Scholar
  6. 6.
    W.F. Vinen, J.J. Niemela, J. Low Temp. Phys. 128, 167 (2002). doi:10.1023/A:1019695418590 ADSCrossRefGoogle Scholar
  7. 7.
    L. Skrbek, K.R. Sreenivasan, Phys. Fluids 24(1), 011301 (2012). doi:10.1063/1.3678335 ADSCrossRefGoogle Scholar
  8. 8.
    L. Skrbek, A.V. Gordeev, F. Soukup, Phys. Rev. E 67, 047302 (2003). doi:10.1103/PhysRevE.67.047302 ADSCrossRefGoogle Scholar
  9. 9.
    W. Guo, S.B. Cahn, J.A. Nikkel, W.F. Vinen, D.N. McKinsey, Phys. Rev. Lett. 105, 045301 (2010). doi:10.1103/PhysRevLett.105.045301
  10. 10.
    K.W. Schwarz, Phys. Rev. B 38(4), 2398 (1988)ADSCrossRefGoogle Scholar
  11. 11.
    C. Barenghi, L. Skrbek, J. Low Temp. Phys. 146(1–2), 5 (2007). doi:10.1007/s10909-006-9270-0 ADSCrossRefGoogle Scholar
  12. 12.
    H. Adachi, S. Fujiyama, M. Tsubota, Phys. Rev. B 81(10), 104511 (2010). doi:10.1103/PhysRevB.81.104511 ADSCrossRefGoogle Scholar
  13. 13.
    H. Adachi, M. Tsubota, Phys. Rev. B 83, 132503 (2011). doi:10.1103/PhysRevB.83.132503 ADSCrossRefGoogle Scholar
  14. 14.
    A.W. Baggaley, L.K. Sherwin, C.F. Barenghi, Y.A. Sergeev, Phys. Rev. B 86, 104501 (2012). doi:10.1103/PhysRevB.86.104501 ADSCrossRefGoogle Scholar
  15. 15.
    R.G.K.M. Aarts, A.T.A.M. de Waele, Phys. Rev. B 50, 10069 (1994). doi:10.1103/PhysRevB.50.10069 ADSCrossRefGoogle Scholar
  16. 16.
    L. Galantucci, C. Barenghi, M. Sciacca, M. Quadrio, P. Luchini, J. Low Temp. Phys. 162(3–4), 354 (2011). doi:10.1007/s10909-010-0266-4
  17. 17.
    A.W. Baggaley, S. Laizet, Phys. Fluids 25, 115101 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    K.W. Schwarz, Phys. Rev. B 31, 5782 (1985). doi:10.1103/PhysRevB.31.5782 ADSCrossRefGoogle Scholar
  19. 19.
    R.J. Donnelly, C.F. Barenghi, J. Phys. Chem. Ref. Data 27(6), 1217 (1998)ADSCrossRefGoogle Scholar
  20. 20.
    D. Kivotides, C.F. Barenghi, D.C. Samuels, Science 290, 777 (2000)ADSCrossRefGoogle Scholar
  21. 21.
    J. Tough, in Progress of Low Temperature Physics, vol. VIII, ed. by D. Brewer (North-Holland Publications, Amsterdam, 1982)Google Scholar
  22. 22.
    W. Vinen, J. Low Temp. Phys. 175(1–2), 305 (2014). doi:10.1007/s10909-013-0911-9 ADSCrossRefGoogle Scholar
  23. 23.
    A.W. Baggaley, C.F. Barenghi, Phys. Rev. B 84, 020504 (2011). doi:10.1103/PhysRevB.84.020504 ADSCrossRefGoogle Scholar
  24. 24.
    A. Baggaley, J. Low Temp. Phys. 168(1–2), 18 (2012). doi:10.1007/s10909-012-0605-8 ADSCrossRefGoogle Scholar
  25. 25.
    R.D. Moser, J. Kim, N.N. Mansour, Phys. Fluids 11(4), 943 (1999)ADSCrossRefMATHGoogle Scholar
  26. 26.
    C.F. Barenghi, R.J. Donnelly, W.F. Vinen, J. Low Temp. Phys. 52, 189 (1983)ADSCrossRefGoogle Scholar
  27. 27.
    S.A. Orszag, J. Fluid Mech. 50, 689 (1971)ADSCrossRefMATHGoogle Scholar
  28. 28.
    S. Babuin, M. Stammeier, E. Varga, M. Rotter, L. Skrbek, Phys. Rev. B 86, 134515 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    T.V. Chagovets, L. Skrbek, Phys. Rev. Lett. 100, 215302 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    C. Barenghi, R. Donnelly, W. Vinen, Quantized Vortex Dynamics and Superfluid Turbulence. Lecture Notes in Physics (Springer, Berlin Heidelberg, 2001)CrossRefGoogle Scholar
  31. 31.
    R. Ostermeier, W. Glaberson, J. Low Temp. Phys. 21(1–2), 191 (1975). doi:10.1007/BF01141298
  32. 32.
    M. Tsubota, C.F. Barenghi, T. Araki, A. Mitani, Phys. Rev. B 69, 134515 (2004). doi:10.1103/PhysRevB.69.134515 ADSCrossRefGoogle Scholar
  33. 33.
    D. Poole, H. Scoffield, C. Barenghi, D. Samuels, J. Low Temp. Phys. 132(1–2), 97 (2003)ADSCrossRefGoogle Scholar
  34. 34.
    C. Barenghi, D. Samuels, J. Low Temp. Phys. 136(5–6), 281 (2004)ADSCrossRefGoogle Scholar
  35. 35.
    V. Eltsov, R. de Graaf, R. Heikkinen, M. Krusius, J. Low Temp. Phys. 161(5–6), 474 (2010). doi:10.1007/s10909-010-0243-y ADSCrossRefGoogle Scholar
  36. 36.
    V.B. Eltsov, R. de Graaf, P.J. Heikkinen, J.J. Hosio, R. Hänninen, M. Krusius, V.S. L’vov, Phys. Rev. Lett. 105, 125301 (2010). doi:10.1103/PhysRevLett.105.125301
  37. 37.
    F. Charru, P. de Forcrand-Millard, Hydrodynamic Instabilities. Cambridge Texts in Applied Mathematics (Cambridge University Press, New york, 2011)CrossRefGoogle Scholar
  38. 38.
    W. Guo, D. McKinsey, A. Marakov, K. Thompson, G. Ihas, W. Vinen, J. Low Temp. Phys. 171(5–6), 497 (2013). doi:10.1007/s10909-012-0708-2 ADSCrossRefGoogle Scholar
  39. 39.
    L. Skrbek. Private communication (2013)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsUniversity of GlasgowGlasgowUK
  2. 2.Department of Physics of Complex SystemsWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations