Advertisement

Journal of Low Temperature Physics

, Volume 176, Issue 5–6, pp 876–884 | Cite as

The Electron Capture \(^{163}\)Ho Experiment ECHo

  • L. Gastaldo
  • K. Blaum
  • A. Doerr
  • Ch. E. Düllmann
  • K. Eberhardt
  • S. Eliseev
  • C. Enss
  • Amand Faessler
  • A. Fleischmann
  • S. Kempf
  • M. Krivoruchenko
  • S. Lahiri
  • M. Maiti
  • Yu. N. Novikov
  • P. C.-O. Ranitzsch
  • F. Simkovic
  • Z. Szusc
  • M. Wegner
Article

Abstract

The determination of the absolute scale of the neutrino masses is one of the most challenging present questions in particle physics. The most stringent limit, \(m(\bar{\nu }_{\mathrm {e}})< 2\) eV, was achieved for the electron anti-neutrino mass. Different approaches are followed to reach a sensitivity on neutrino masses in the sub-eV range. Among them, experiments exploring the beta decay or electron capture of suitable nuclides can provide information on the electron neutrino mass value. We present the electron capture \(^{163}\)Ho experiment ECHo, which aims to investigate the electron neutrino mass in the sub-eV range by means of the analysis of the calorimetrically measured energy spectrum following electron capture in \(^{163}\)Ho. A high precision and high statistics spectrum will be measured with arrays of metallic magnetic calorimeters. We discuss some of the essential aspects of ECHo to reach the proposed sensitivity: detector optimization and performance, multiplexed readout, \(^{163}\)Ho source production and purification, as well as a precise theoretical and experimental parameterization of the calorimetric EC spectrum including in particular the value of \(Q_{\mathrm {EC}}\). We present preliminary results obtained with a first prototype of single channel detectors as well as a first 64-pixel chip with integrated micro-wave SQUID multiplexer, which will already allow to investigate \(m(\nu _{\mathrm {e}})\) in the eV range.

Keywords

Neutrino mass Metallic magnetic calorimeters \(^{163}\)Ho 

References

  1. 1.
    G.L. Fogli et al., Phys. Rev. D 86, 013012 (2012)CrossRefADSGoogle Scholar
  2. 2.
    K.N. Abazajian et al., Astropart. Phys. 35, 177 (2011). http://arxiv.org/abs/1103.5083
  3. 3.
    F.T. Avignone III et al., Rev. Mod. Phys. 80, 481 (2008). http://arxiv.org/abs/arXiv:0708.1033
  4. 4.
    G. Pagliaroli, F. Rossi Torres, F. Vissani, Astropart. Phys. 33, 287 (2010)CrossRefADSGoogle Scholar
  5. 5.
    G. Drexlin et al., Adv. High Energy Phys. 2013, 293986 (2013)CrossRefGoogle Scholar
  6. 6.
    C. Kraus et al., Eur. Phys. J. C 40, 447 (2005)CrossRefADSGoogle Scholar
  7. 7.
    V.M. Lobashev et al., Nucl. Phys. A 719, 153c (2003)CrossRefADSGoogle Scholar
  8. 8.
    V.N. Aseev et al., Phys. Rev. D 84, 112003 (2011). http://arxiv.org/abs/1108.5034v1
  9. 9.
    A. De Rujula, M. Lusignoli, Phys. Lett. B 118, 429 (1982)CrossRefADSGoogle Scholar
  10. 10.
  11. 11.
    C. Enss, Top. Appl. Phys. 99, 63–149 (2005)Google Scholar
  12. 12.
    A. Fleischmann et al., AIP Conf. Proc. 1185, 571 (2009)CrossRefADSGoogle Scholar
  13. 13.
    M. Galeazzi et al., http://arxiv.org/abs/1202.4763
  14. 14.
    C. Pies et al., J. Low Temp. Phys. 167, 269 (2012)CrossRefADSGoogle Scholar
  15. 15.
    L. Gastaldo et al., Nucl. Instrum. Method A 711, 150 (2013)CrossRefADSGoogle Scholar
  16. 16.
    E. Kugler, Hyperfine Interact. 129, 23 (2000)CrossRefADSGoogle Scholar
  17. 17.
    P.C.-O. Ranitzsch et al., J. Low Temp. Phys. 167, 1004 (2012)CrossRefADSGoogle Scholar
  18. 18.
    J.A.B. Mates et al., Appl. Phys. Lett. 92(2), 023514 (2008)CrossRefADSGoogle Scholar
  19. 19.
    S. Kempf, J. Low Temp. Phys. doi: 10.1007/s10909-013-1041-0
  20. 20.
    J.W. Engle et al., Nucl. Instrum. Methods B 311, 131 (2013)CrossRefADSGoogle Scholar
  21. 21.
    I. Usolstev et al., Nucl. Instrum. Methods A 691, 5 (2012)CrossRefADSGoogle Scholar
  22. 22.
    P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)CrossRefMathSciNetADSGoogle Scholar
  23. 23.
    W.F. Egelhoff Jr, Surf. Sci. Rep. 6, 253 (1987)CrossRefADSGoogle Scholar
  24. 24.
    M.I. Krivoruchenko, F. Simkovic, D. Frekers, A. Faessler, Nucl. Phys. A 859, 140 (2011)CrossRefADSGoogle Scholar
  25. 25.
    M. Wang, G. Audi et al., Chin. Phys. C 36, 1603 (2012)CrossRefGoogle Scholar
  26. 26.
    J.U. Andersen et al., Phys. Lett. B 113, 72 (1982)CrossRefADSGoogle Scholar
  27. 27.
    F. Gatti et al., Phys. Lett. B 398, 415 (1997)CrossRefADSGoogle Scholar
  28. 28.
    M. Block et al., Eur. Phys. J. D 45, 39 (2007)CrossRefADSGoogle Scholar
  29. 29.
    J. Ketelaer et al., Nucl. Instrum. Methods A 594, 162 (2008)CrossRefADSGoogle Scholar
  30. 30.
    J. Repp et al., Appl. Phys. B 107, 983 (2012)CrossRefADSGoogle Scholar
  31. 31.
    C. Roux et al., Appl. Phys. B 107, 997 (2012)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • L. Gastaldo
    • 1
  • K. Blaum
    • 2
  • A. Doerr
    • 2
  • Ch. E. Düllmann
    • 3
    • 4
    • 5
  • K. Eberhardt
    • 3
    • 5
  • S. Eliseev
    • 2
  • C. Enss
    • 1
  • Amand Faessler
    • 6
  • A. Fleischmann
    • 1
  • S. Kempf
    • 1
  • M. Krivoruchenko
    • 7
  • S. Lahiri
    • 8
  • M. Maiti
    • 9
  • Yu. N. Novikov
    • 10
  • P. C.-O. Ranitzsch
    • 1
  • F. Simkovic
    • 11
  • Z. Szusc
    • 12
  • M. Wegner
    • 1
  1. 1.Kirchhoff Institute for PhysicsHeidelberg UniversityHeidelbergGermany
  2. 2.Max-Planck Institute for Nuclear PhysicsHeidelbergGermany
  3. 3.Institute for Nuclear ChemistryJohannes Gutenberg UniversityMainzGermany
  4. 4.GSI Helmholtzzentrum für SchwerionenforschungDarmstadtGermany
  5. 5.Helmholtz Institute MainzMainzGermany
  6. 6.Institute for Theoretical PhysicsUniversity of TübingenTübingenGermany
  7. 7.Institute for Theoretical and Experimental PhysicsMoscowRussia
  8. 8.Saha Institute of Nuclear PhysicsKolkata India
  9. 9.Department of PhysicsIndian Institute of Technology RoorkeeRoorkee India
  10. 10.Petersburg Nuclear Physics InstituteGatchinaRussia
  11. 11.Department of Nuclear Physics and BiophysicsComenius UniversityBratislavaSlovakia
  12. 12.Department of Cyclotron LaboratoryInstitute of Nuclear Research of the Hungarian Academy of SciencesDebrecen Hungary

Personalised recommendations