Advertisement

Journal of Low Temperature Physics

, Volume 176, Issue 5–6, pp 1089–1095 | Cite as

Study on Optical Filter Heating in Background Limited Detector Experiments

  • J. BuenoEmail author
  • P. J. de Visser
  • S. Doyle
  • J. J. A. Baselmans
Article

Abstract

Cryogenic test setups with controlled stray light environments capable of reaching ultra-low radiative background levels are required to test far infrared (FIR) and submillimeter (sub-mm) wave radiation detectors for future space based observatories. In recent experiments (Nature Commun 5:3130, 2014), in which 1.54 THz radiation was coupled onto an antenna-coupled kinetic inductance detector (KID), we found a higher than expected optical loading. We show that this can be explained by assuming heating of the metal mesh IR filters and re-radiation onto the KID. Note that the total power from the cryogenic black body source used in the experiments (at T = \(3\)\(25\) K) is much larger than the power inside the \(1.5\)\(1.6\) THz band we use to calibrate our detector. The out-of-band radiation can have up to 5 orders of magnitude more power than inside the \(1.5\)\(1.6\) THz band of interest. A strategy to mitigate the filter heating problem is presented, and when it is implemented, the validated upper limit for stray light at the detector level is down to few aW.

Keywords

Cryogenic setup Ultra low background Optical filters 

Notes

Acknowledgments

This work has been supported as part of a collaborative project, SPACEKIDS, funded via grant 313320 provided by the European Commission under Theme SPA.2012.2.2-01 of Framework Programme 7.

References

  1. 1.
    P.J. de Visser, J.J.A. Baselmans, J. Bueno, N. Llombart, T.M. Klapwijk, Nature Commun. 5, 3130 (2014)CrossRefGoogle Scholar
  2. 2.
    G.L. Pilbratt et al., Astron. Astrophys. 518, L1 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    P. Roelfsema et al., Space telescopes and instrumentation 2012: optical, infrared, and millimeter wave. Proc. SPIE 8442, 84420R (2012). doi: 10.1117/12.927010
  4. 4.
    W. Wild et al., Exp. Astron. 23, 221 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    C.M. Bradford, M. Kenyon, W. Holmes, J. Bock, T. Koch, Proc. SPIE 7020, 702010 (2008)CrossRefGoogle Scholar
  6. 6.
    P.K. Day, H.G. LeDuc, B.A. Mazin, A. Vayonakis, J. Zmudzinas, Nature 293, 817 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    J.J. Baselmans, S. Yates, P. Diener, P.J. de Visser, J. Low Temp. Phys. 167, 360 (2012)Google Scholar
  8. 8.
    QMC Instruments (QMCI): http://www.terahertz.co.uk/. Accessed May 2013
  9. 9.
    Computer Simulation Technology (CST): http://www.cst.com. Accessed July 2013

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • J. Bueno
    • 1
    Email author
  • P. J. de Visser
    • 1
    • 2
  • S. Doyle
    • 3
  • J. J. A. Baselmans
    • 1
  1. 1.SRON - Netherlands Institute for Space ResearchUtrechtThe Netherlands
  2. 2.Kavli Institute of NanoscienceDelft University of TechnologyDelftThe Netherlands
  3. 3.Department of Physics and AstronomyCardiff UniversityCardiffUK

Personalised recommendations