Journal of Low Temperature Physics

, Volume 175, Issue 5–6, pp 838–849 | Cite as

Nanosized Electronic Cooler Combined with Superconducting Proximity Effect Thermometry

  • Matthias MeschkeEmail author


Electronic coolers have the potential to lower the temperature of mesoscopic electronic systems well below the lattice temperature with the final goal to reach ultimately an electronic temperature in the 10 mK range. A challenging task is to design a reliable electronic thermometry for this temperature range, including extremely low power dissipation, good sensitivity and preferably a theoretical description of the response with few experimentally determined parameters. We present an experimental realization and characterization of a nano sized electronic cooler with a superconducting proximity effect thermometer. We demonstrate an improved operation mode of the thermometer using escape statistics from the superconducting to the normal state.


Solid state cooler Proximity thermometer Escape statistics 



I acknowledge the support of the European Community’s FP7 Programme under Grant Agreement No. 228464 (MICROKELVIN, Capacities Specic Programme). I thank J. P. Pekola, T. T. Heikkilä, J. T. Peltonen, J. T. Muhonen and H. Q. Nguyen for discussions. The samples are fabricated in the Micronova Nanofabrication Center of Aalto University.


  1. 1.
    F.C. Wellstood, C. Urbina, J. Clarke, Phys. Rev. B 49, 5942 (1994)CrossRefADSGoogle Scholar
  2. 2.
    M. Nahum, T.M. Eiles, J.M. Martinis, Appl. Phys. Lett. 65(24), 3123 (1994)CrossRefADSGoogle Scholar
  3. 3.
    M.M. Leivo, J.P. Pekola, D.V. Averin, Appl. Phys. Lett. 68(14), 1996 (1996)CrossRefADSGoogle Scholar
  4. 4.
    F. Giazotto, T.T. Heikkilä, A. Luukanen, A.M. Savin, J.P. Pekola, Rev. Mod. Phys. 78, 217 (2006)CrossRefADSGoogle Scholar
  5. 5.
    P.J. Koppinen, I.J. Maasilta, Phys. Rev. Lett. 102, 165502 (2009)CrossRefADSGoogle Scholar
  6. 6.
    J.T. Muhonen, A.O. Niskanen, M. Meschke, Y.A. Pashkin, J.S. Tsai, L. Sainiemi, S. Franssila, J.P. Pekola, Appl. Phys. Lett. 94, 073101 (2009)CrossRefADSGoogle Scholar
  7. 7.
    J. Jochum, C. Mears, S. Golwala, B. Sadoulet, J.P. Castle, M.F. Cunningham, O.B. Drury, M. Frank, S.E. Labov, F.P. Lipschultz, H. Netel, B. Neuhauser, J. Appl. Phys. 83, 3217 (1998)CrossRefADSGoogle Scholar
  8. 8.
    J.P. Pekola, D.V. Anghel, T.I. Suppula, J.K. Suoknuuti, A.J. Manninen, M. Manninen, Appl. Phys. Lett. 76, 2782 (2000)CrossRefADSGoogle Scholar
  9. 9.
    J.N. Ullom, P.A. Fisher, Physica B 284–288, 2036 (2000)CrossRefGoogle Scholar
  10. 10.
    J.P. Pekola, T.T. Heikkilä, A.M. Savin, J.T. Flyktman, F. Giazotto, F.W.J. Hekking, Phys. Rev. Lett. 92, 056804 (2004)CrossRefADSGoogle Scholar
  11. 11.
    A. Vasenko, F. Hekking, J. Low Temp. Phys. 154, 221 (2009)CrossRefADSGoogle Scholar
  12. 12.
    N. Vercruyssen, R. Barends, T.M. Klapwijk, J.T. Muhonen, M. Meschke, J.P. Pekola, Appl. Phys. Lett. 99, 062509 (2011)CrossRefGoogle Scholar
  13. 13.
    S. Rajauria, L.M.A. Pascal, P. Gandit, F.W.J. Hekking, B. Pannetier, H. Courtois, Phys. Rev. B 85, 020505 (2012)CrossRefADSGoogle Scholar
  14. 14.
    V.J. Kauppila, H.Q. Nguyen, T.T. Heikkilä, Phys. Rev. B 88, 075428 (2013)CrossRefADSGoogle Scholar
  15. 15.
    J.T. Peltonen, P. Virtanen, M. Meschke, J.V. Koski, T.T. Heikkilä, J.P. Pekola, Phys. Rev. Lett. 105, 097004 (2010)CrossRefADSGoogle Scholar
  16. 16.
    J.T. Peltonen, J.T. Muhonen, M. Meschke, N.B. Kopnin, J.P. Pekola, Phys. Rev. B 84, 220502 (2011)CrossRefADSGoogle Scholar
  17. 17.
    P.J. Lowell, G.C. O’Neil, J.M. Underwood, J.N. Ullom, Appl. Phys. Lett. 102, 082601 (2013)CrossRefADSGoogle Scholar
  18. 18.
    H.Q. Nguyen, T. Aref, V.J. Kauppila, M. Meschke, C.B. Winkelmann, H. Courtois, J.P. Pekola, New J. Phys. 15, 085013 (2013)CrossRefADSGoogle Scholar
  19. 19.
    J.V. Koski, J.T. Peltonen, M. Meschke, J.P. Pekola, Appl. Phys. Lett. 98, 203501 (2011)CrossRefADSGoogle Scholar
  20. 20.
    A.S. Vasenko, E.V. Bezuglyi, H. Courtois, F.W.J. Hekking, Phys. Rev. B 81, 094513 (2010)CrossRefADSGoogle Scholar
  21. 21.
    S. Rajauria, P. Gandit, F. Hekking, B. Pannetier, H. Courtois, J. Low Temp. Phys. 154, 211 (2009)CrossRefADSGoogle Scholar
  22. 22.
    O.P. Saira, M. Meschke, F. Giazotto, A.M. Savin, M. Möttönen, J.P. Pekola, Phys. Rev. Lett. 99, 027203 (2007)CrossRefADSGoogle Scholar
  23. 23.
    P. Dubos, H. Courtois, B. Pannetier, F.K. Wilhelm, A.D. Zaikin, G. Schön, Phys. Rev. B 63, 064502 (2001)CrossRefADSGoogle Scholar
  24. 24.
    T.T. Heikkilä, J. Särkkä, F.K. Wilhelm, Phys. Rev. B 66, 184513 (2002)CrossRefADSGoogle Scholar
  25. 25.
    A.F. Andreev, Sov. Phys. JETP. 19, 1228 (1964)Google Scholar
  26. 26.
    T.T. Heikkilä, F. Giazotto, Phys. Rev. B 79, 094514 (2009)CrossRefADSGoogle Scholar
  27. 27.
    H. Courtois, M. Meschke, J.T. Peltonen, J.P. Pekola, Phys. Rev. Lett. 101, 067002 (2008)CrossRefADSGoogle Scholar
  28. 28.
    A.D. Zaikin, G.F. Zharkov, Sov. J. Low Temp. Phys. 7, 184 (1981)Google Scholar
  29. 29.
    G.J. Dolan, Appl. Phys. Lett. 31, 337 (1971)CrossRefADSGoogle Scholar
  30. 30.
    K. Irwin, G. Hilton, J. Martinis, B. Cabrera, Nucl. Instrum. Methods Phys. Res. A 370, 177 (1996)CrossRefADSGoogle Scholar
  31. 31.
    S.J. MacLeod, S. Kafanov, J.P. Pekola, Appl. Phys. Lett. 95, 052503 (2009)CrossRefADSGoogle Scholar
  32. 32.
    M. Meschke, J. Peltonen, H. Courtois, J. Pekola, J. Low Temp. Phys. 154, 190 (2009)CrossRefADSGoogle Scholar
  33. 33.
    J.P. Pekola, J.P. Kauppinen, Cryogenics 34, 843 (1994)CrossRefADSGoogle Scholar
  34. 34.
    F. Giazotto, T.T. Heikkilä, G.P. Pepe, P. Helistö, A. Luukanen, J.P. Pekola, Appl. Phys. Lett. 92, 162507 (2008)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Low Temperature Laboratory, O.V. Lounasmaa LaboratoryAalto UniversityAaltoFinland

Personalised recommendations