Journal of Low Temperature Physics

, Volume 175, Issue 5–6, pp 655–666 | Cite as

Topological Matter: Graphene and Superfluid \(^3\)He

  • M. I. Katsnelson
  • G. E. Volovik


The physics of graphene and of the superfluid phases of \(^3\)He have many common features. Both systems are topological materials where quasiparticles behave as relativistic massless (Weyl, Majorana or Dirac) fermions. We formulate the points where these features are overlapping. This will allow us to use graphene to study the properties of superfluid \(^3\)He, to use superfluid \(^3\)He to study the properties of graphene, and to use both of them in combination to study the physics of topological quantum vacuum. We suggest also some particular experiments with superfluid \(^3\)He using graphene as an atomically thin membrane impenetrable for He atoms but allowing for spin, momentum and energy transfer.


Graphene Superfluid \(^3\)He Topological matter 



We acknowledge financial support by the EU 7th Framework Programme (FP7/2007-2013, Grant \(\#\)228464 Microkelvin), GEV by the Academy of Finland through its LTQ CoE Grant (Project \(\#\)250280) and MIK by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) via Spinoza Prize.


  1. 1.
    G.E. Volovik, The Universe in a Helium Droplet (Clarendon Press, Oxford, 2003)zbMATHGoogle Scholar
  2. 2.
    M.I. Katsnelson, Graphene: Carbon in Two Dimensions (Cambridge University Press, Cambridge, 2012)CrossRefGoogle Scholar
  3. 3.
    X.-L. Qi, S.-C. Zhang, Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011)CrossRefADSGoogle Scholar
  4. 4.
    M.I. Katsnelson, G.E. Volovik, M.A. Zubkov, Euler–Heisenberg effective action and magnetoelectric effect in multilayer graphene. Ann. Phys. (N.Y.) 331, 160–187 (2013)Google Scholar
  5. 5.
    M.I. Katsnelson, G.E. Volovik, M.A. Zubkov, Unruh effect in vacua with anisotropic scaling: applications to multilayer graphene. Ann. Phys. (N.Y.) 336, 36–55 (2013)Google Scholar
  6. 6.
    T.T. Heikkilä, N.B. Kopnin, G.E. Volovik, Flat bands in topological media. JETP Lett. 94, 233–239 (2011)CrossRefADSGoogle Scholar
  7. 7.
    F. Wilczek, Majorana returns. Nat. Phys. 5, 614–618 (2009)CrossRefGoogle Scholar
  8. 8.
    V. Mourik, K. Zuo, S.M. Frolov, S.R. Plissard, E.P.A.M. Bakkers, L.P. Kouwenhoven, Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices. Science 336, 1003–1007 (2012)CrossRefADSGoogle Scholar
  9. 9.
    L. Kou, B. Yan, F. Hu, S.-C. Wu, T.O. Wehling, C. Felser, C. Chen, T. Frauenheim, Graphene-based topological insulator with an intrinsic bulk band gap above room temperature. arXiv:1310.2580
  10. 10.
    J.S. Bunch, S.S. Verbridge, J.S. Alden, A.M. van der Zande, J.M. Parpia, H.G. Craighead, P.L. McEuen, Impermeable atomic membranes from graphene sheets. Nano Lett. 8, 2458–2462 (2008)CrossRefADSGoogle Scholar
  11. 11.
    O. Leenaerts, B. Partoens, F.M. Peeters, Graphene: a perfect nanoballoon. Appl. Phys. Lett. 93, 193107 (2008)CrossRefADSGoogle Scholar
  12. 12.
    L.W. Drahushuk, M.S. Strano, Mechanisms of gas permeation through single layer graphene membranes. Langmuir 28, 16671–16678 (2012)CrossRefGoogle Scholar
  13. 13.
    Y. Kwon, D.M. Ceperley, \(^4\)He adsorption on a single graphene sheet: path-integral Monte Carlo study. Phys. Rev. B 85, 224501 (2012)CrossRefADSGoogle Scholar
  14. 14.
    L. Reatto, M. Nava, D.E. Galli, C. Billman, J.O. Sofo, M.W. Cole, Novel substrates for Helium adsorption: graphane and Graphene Fluoride. J. Phys.: Conf. Ser. 400, 012010 (2012)ADSGoogle Scholar
  15. 15.
    E.V. Castro, H. Ochoa, M.I. Katsnelson, R.V. Gorbachev, D.C. Elias, K.S. Novoselov, A.K. Geim, F. Guinea, Limits on charge carrier mobility in suspended graphene due to flexural phonons. Phys. Rev. Lett. 105, 266601 (2010)CrossRefADSGoogle Scholar
  16. 16.
    H. Ochoa, E.V. Castro, M.I. Katsnelson, F. Guinea, Temperature-dependent resistivity in bilayer graphene due to flexural phonons. Phys. Rev. B 83, 235416 (2011)CrossRefADSGoogle Scholar
  17. 17.
    I.V. Gornyi, V. Yu. Kachorovskii, A.D. Mirlin, Conductivity of suspended graphene at the Dirac point. Phys. Rev. B 86, 165413 (2012)Google Scholar
  18. 18.
    V.B. Eltsov, P.J. Heikkinen, V.V. Zavjalov, Gravity waves on the surface of topological superfluid \(^3\)He-B. arXiv:1302.0764
  19. 19.
    L. Deike, J.-C. Bacri, E. Falcon, Nonlinear waves on the surface of a fluid covered by an elastic sheet. J. Fluid Mech. 733, 394 (2013). arXiv:1309.6990 Google Scholar
  20. 20.
    M.M. Salomaa, G.E. Volovik, Cosmiclike domain walls in superfluid \(^3\)He-B: instantons and diabolical points in (k, \(bfr\)) space. Phys. Rev. B 37, 9298–9311 (1988)Google Scholar
  21. 21.
    G.E. Volovik, Fermion zero modes at the boundary of superfluid \(^3\)He-B. JETP Lett. 90, 398–401 (2009)CrossRefADSGoogle Scholar
  22. 22.
    G.E. Volovik, Topological superfluid \(^3\)He-B in magnetic field and Ising variable. JETP Lett. 91, 201–205 (2010)CrossRefADSGoogle Scholar
  23. 23.
    J.L. Manes, F. de Juan, M. Sturla, M.A.H. Vozmediano, Generalized effective hamiltonian for graphene under non-uniform, strain. arXiv:1308.1595
  24. 24.
    M.A. Zubkov, G.E. Volovik, Emergent gravity in graphene. arXiv:1308.2249
  25. 25.
    T. Mizushima, M. Sato, K. Machida, Symmetry protected topological order and spin susceptibility in superfluid \(^3\)He-B. Phys. Rev. Lett. 109, 165301 (2012)CrossRefADSGoogle Scholar
  26. 26.
    S.B. Chung, S.-C. Zhang, Detecting the Majorana fermion surface state of \(^3\)He-B through spin relaxation. Phys. Rev. Lett. 103, 235301 (2009)CrossRefADSGoogle Scholar
  27. 27.
    Q. Liu, C.-X. Liu, C. Xu, X.-L. Qi, S.-C. Zhang, Magnetic impurities on the surface of a topological insulator. Phys. Rev. Lett. 102, 156603 (2009)CrossRefADSGoogle Scholar
  28. 28.
    A.S. Borovik-Romanov, Yu. M. Bunkov, V.V. Dmitriev, Yu. M. Mukharskiy, Long-lived induction signal in superfluid \(^3\)He-B. JETP Lett. 40, 1033–1037 (1984)Google Scholar
  29. 29.
    A.S. Borovik-Romanov, Yu. M. Bunkov, V.V. Dmitriev, Yu. M. Mukharskiy, K. Flachbart, Experimental study of separation of magnetization precession in \(^3\)He-B into two magnetic domains. Sov. Phys. JETP 61, 1199–1206 (1985)Google Scholar
  30. 30.
    I.A. Fomin, Long-lived induction signal and spatially nonuniform spin precession in \(^3\)He-B. JETP Lett. 40, 1037–1040 (1984)ADSGoogle Scholar
  31. 31.
    I.A. Fomin, Separation of magnetization precession in \(^3\)He-B into two magnetic domains. Theory. JETP 61, 1207–1213 (1985)Google Scholar
  32. 32.
    Yu.M. Bunkov, G.E. Volovik, in Spin Superfluidity and Magnon Bose–Einstein Condensation. Novel Superfluids, eds. by K.H. Bennemann, J.B. Ketterson. International Series of Monographs on Physics 156, Volume 1, Chapter 4 (2013), pp. 253–311. arXiv:1003.4889
  33. 33.
    S. Autti, Yu. M. Bunkov, V.B. Eltsov, P.J. Heikkinen, J.J. Hosio, P. Hunger, M. Krusius, G.E. Volovik, Self-trapping of magnon Bose–Einstein condensates in the ground state and on excited levels: from harmonic to box confinement. Phys. Rev. Lett. 108, 145303 (2012)Google Scholar
  34. 34.
    S. Autti, V.B. Eltsov, G.E. Volovik, Bose analogs of MIT bag model of hadrons in coherent precession. JETP Lett. 95, 544–548 (2012)CrossRefADSGoogle Scholar
  35. 35.
    P.J. Heikkinen, S. Autti, V.B. Eltsov, J.J. Hosio, M. Krusius, V.V. Zavjalov, Relaxation of Bose–Einstein condensates of magnons in magneto-textural traps in superfluid \(^3\)He-B. J. Low Temp. Phys 175, 3–16 (2014)CrossRefADSGoogle Scholar
  36. 36.
    G.E. Volovik, V.M. Yakovenko, Fractional charge, spin and statistics of solitons in superfluid \(^3\)He film. J. Phys.: Cond. Matter 1, 5263–5274 (1989)ADSGoogle Scholar
  37. 37.
    A.S. Borovik-Romanov, Yu.M. Bunkov, A. de Waard, V.V. Dmitriev, V. Makrotsieva, Yu.M. Mukharskiy, D.A. Sergatskov, Observation of a spin supercurrent analog of the Josephson effect. JETP Lett. 47, 478–482 (1988)Google Scholar
  38. 38.
    R.R. Nair, I.-L. Tsai, M. Sepioni, O. Lehtinen, J. Keinonen, A.V. Krasheninnikov, A.H. Castro, Neto, M.I. Katsnelson, A.K. Geim, I.V. Grigorieva, Dual origin of defect magnetism in graphene and its reversible switching by molecular doping. Nat. Commun. 4, 2010 (2013)Google Scholar
  39. 39.
    V.N. Kotov, B. Uchoa, V.M. Pereira, F. Guinea, A.H. Castro Neto, Electron–electron interactions in graphene: current status and perspectives. Rev. Mod. Phys. 84, 1067–1125 (2012)Google Scholar
  40. 40.
    E. Kogan, RKKY interaction in graphene. Phys. Rev. B 84, 115119 (2011)CrossRefADSGoogle Scholar
  41. 41.
    S.V. Maleev, Dipole forces in two-dimensional and layered ferromagnets. Sov. Phys. JETP 43, 1240–1247 (1976)ADSGoogle Scholar
  42. 42.
    A. Grechnev, V.Yu. Irkhin, M.I. Katsnelson, O. Eriksson, Thermodynamics of a two-dimensional Heisenberg ferromagnet with dipolar interaction. Phys. Rev. B 71, 024427 (2005)Google Scholar
  43. 43.
    A. Casey, M. Neumann, B. Cowan, J. Saunders, N. Shannon, Two-dimensional ferromagnetism of a \(^3\)He film: influence of weak frustration. Phys. Rev. Lett. 111, 125302 (2013)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Radboud University NijmegenInstitute for Molecules and MaterialsNijmegenThe Netherlands
  2. 2.Department of Theoretical Physics and Applied MathematicsUral Federal UniversityEkaterinburgRussia
  3. 3.Low Temperature LaboratoryAalto UniversityAaltoFinland
  4. 4.L.D. Landau Institute for Theoretical PhysicsMoscowRussia

Personalised recommendations