Journal of Low Temperature Physics

, Volume 176, Issue 1–2, pp 101–112 | Cite as

Helium and Hydrogen Adsorbed on Spheres and Cylinders

  • E. S. HernándezEmail author
  • L. Szybisz


We examine the metastable and unstable regimes of condensation of superfluid helium and parahydrogen on spheres and cylinders at finite temperatures, employing finite range density functionals. The goal is to compare calculations of sizes and spreads of films at the onset of metastability and of instability with the predictions of a simple phenomenological model that contemplates the curvature of the substrate. We have focused on two cases, helium on nanospheres and nanocylinders of different materials, and hydrogen on fullerenes. We are able to locate the onset of metastability and of spinodal instability in the adsorption isotherms of every sample and to extract the width of the condensed fluid. It is shown that the predictions of the so-called simple model agree surprisingly well with the more elaborate calculations.


Curved substrates Adsorption Instabilities Film spread Density functional 



The authors are pleased to acknowledge fruitful conversations with M. Cole on the physics of the phenomenological approximation, and interesting discussions with F. Ancilotto during the first stages of the calculations. This work was performed with partial support from grants PIP 0546 from CONICET, UBACYT 01/K156 from University of Buenos Aires and PICT 2011/1217 from ANPCYT, Argentina.


  1. 1.
    J.W. Cahn, J. Chem. Phys. 66, 3667 (1977)ADSCrossRefGoogle Scholar
  2. 2.
    D. Beysens, D. Estève, Phys. Rev. Lett. 54, 2123 (1985)ADSCrossRefGoogle Scholar
  3. 3.
    P. Taborek, L. Senator, Phys. Rev. Lett. 57, 218 (1986)ADSCrossRefGoogle Scholar
  4. 4.
    R. Holyst, A. Poniewierski, Phys. Rev. B 36, 5628 (1987)ADSCrossRefGoogle Scholar
  5. 5.
    M. Gelfand, E. Lipowsky, Phys. Rev. B 36, 8725 (1987)ADSCrossRefMathSciNetGoogle Scholar
  6. 6.
    P.J. Upton, J.O. Indekeu, J.M. Yeomans, Phys. Rev. B 40, 666 (1989)ADSCrossRefGoogle Scholar
  7. 7.
    T. Bieker, S. Dietrich, Phys. A 252, 85 (1998)CrossRefGoogle Scholar
  8. 8.
    R. Evans, R. Roth, P. Bryk, Eur. Lett. 62, 815 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    A.O. Parry, C. Rascón, L. Morgan, J. Chem. Phys. 124, 151101 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    E.S. Hernández, M.W. Cole, M. Boninsegni, Phys. Rev. B 68, 1254181 (2003)CrossRefGoogle Scholar
  11. 11.
    E.S. Hernández, M.W. Cole, M. Boninsegni, J. Low Temp. Phys. 134, 309 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    L. Szybisz, I. Urrutia, J. Low Temp. Phys. 134, 1079 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    E.S. Hernández, J. Low Temp. Phys. 138, 241 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    E.S. Hernández, J. Low Temp. Phys. 137, 89 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    R.B. Hallock, Y.H. Kahng, J. Low Temp. Phys. 134, 21 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    M.C. Gordillo, J. Boronat, Phys. Rev. B 86, 165409 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    E.J. Bottani, J.M.D. Tascón (eds.), Adsorption by Carbons: Novel Carbon Adsorbents (Elsevier, Amsterdam, 2008)Google Scholar
  18. 18.
    F. Ancilotto, F. Faccin, F. Toigo, Phys. Rev. B 62, 17035 (2000)ADSCrossRefGoogle Scholar
  19. 19.
    M.S. Pettersen, J. Low Temp. Phys. 157, 137 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    J. Navarro, F. Ancilotto, M. Barranco, M. Pi, J. Phys. Chem. A 115, 6910 (2011)Google Scholar
  21. 21.
    F. Ancilotto, M. Barranco, E.S. Hernández, A. Hernando, M. Pi, Phys. Rev. B 79, 1045141 (2009)CrossRefGoogle Scholar
  22. 22.
    J.D. Turnbull, M. Boninsegni, Phys. Rev. B 71, 205421 (2005)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Departamento de Física/IFIBA, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
  2. 2.Instituto de Física de Buenos AiresBuenos AiresArgentina
  3. 3.Comisión Nacional de Energía AtómicaBuenos AiresArgentina

Personalised recommendations