Journal of Low Temperature Physics

, Volume 175, Issue 5–6, pp 739–754 | Cite as

Measurements on Melting Pressure, Metastable Solid Phases, and Molar Volume of Univariant Saturated Helium Mixture

  • J. RystiEmail author
  • M. S. Manninen
  • J. Tuoriniemi


A concentration-saturated helium mixture at the melting pressure consists of two liquid phases and one or two solid phases. The equilibrium system is univariant, whose properties depend uniquely on temperature. Four coexisting phases can exist on singular points, which are called quadruple points. As a univariant system, the melting pressure could be used as a thermometric standard. It would provide some advantages compared to the current reference, namely pure \(^3\)He, especially at the lowest temperatures below 1 mK. We have extended the melting pressure measurements of the concentration-saturated helium mixture from 10 to 460 mK. The density of the dilute liquid phase was also recorded. The effect of the equilibrium crystal structure changing from hcp to bcc was clearly seen at \(T=294\) mK at the melting pressure \(P=2.638\) MPa. We observed the existence of metastable solid phases around this point. No evidence was found for the presence of another, disputed, quadruple point at around 400 mK. The experimental results agree well with our previous calculations at low temperatures, but deviate above 200 mK.


Melting pressure thermometry Quadruple point  Solid nucleation Nucleation overpressure 



This work has been supported in part by the EU 7th Framework Programme (FP7/2007-2013, Grant No. 228464 Microkelvin) and by the Academy of Finland through its LTQ CoE grant (Project No. 250280). We also acknowledge the National Doctoral Programme in Materials Physics for financial support. We thank A. Sebedash and I. Todoshchenko for useful discussions.


  1. 1.
    R. Rusby, M. Durieux, A. Reesink, R. Hudson, G. Schuster, M. Kühne, W. Fogle, R. Soulen, E. Adams, J. Low Temp. Phys. 126, 633 (2002)CrossRefADSGoogle Scholar
  2. 2.
    A. Sebedash, J.T. Tuoriniemi, S. Boldarev, E.M. Pentti, A.J. Salmela, AIP Conf. Proc. 850, 1591 (2006)CrossRefADSGoogle Scholar
  3. 3.
    A. Sebedash, J. Tuoriniemi, E. Pentti, A. Salmela, J. Phys. Conf. Ser. 150, 012043 (2009)CrossRefADSGoogle Scholar
  4. 4.
    J. Tuoriniemi, J. Martikainen, E. Pentti, A. Sebedash, S. Boldarev, G. Pickett, J. Low Temp. Phys. 129, 531 (2002)CrossRefADSGoogle Scholar
  5. 5.
    D.O. Edwards, S. Balibar, Phys. Rev. B 39, 4083 (1989)CrossRefADSGoogle Scholar
  6. 6.
    A. Salmela, A. Sebedash, J. Rysti, E. Pentti, J. Tuoriniemi, Phys. Rev. B 83, 134510 (2011)CrossRefADSGoogle Scholar
  7. 7.
    E.M. Pentti, J.T. Tuoriniemi, A.J. Salmela, A.P. Sebedash, Phys. Rev. B 78, 064509 (2008)CrossRefADSGoogle Scholar
  8. 8.
    E. Pentti, J. Tuoriniemi, A. Salmela, A. Sebedash, J. Low Temp. Phys. 146, 71 (2007)CrossRefADSGoogle Scholar
  9. 9.
    W. Yao, T.A. Knuuttila, K.K. Nummila, J.E. Martikainen, A.S. Oja, O.V. Lounasmaa, J. Low Temp. Phys. 120, 121 (2000)CrossRefADSGoogle Scholar
  10. 10.
    M.S. Manninen, J.-P. Kaikkonen, V. Peri, J. Rysti, I. Todoshchenko, and J. Tuoriniemi, J. Low Temp. Phys. 175, 56 (2014)Google Scholar
  11. 11.
    E.R. Grilly, J. Low Temp. Phys. 11, 33 (1973)CrossRefADSGoogle Scholar
  12. 12.
    G.E. Watson, J.D. Reppy, R.C. Richardson, Phys. Rev. 188, 384 (1969)CrossRefADSGoogle Scholar
  13. 13.
    E. Tanaka, K. Hatakeyama, S. Noma, T. Satoh, Cryogenics 40, 365 (2000)CrossRefADSGoogle Scholar
  14. 14.
    E.C. Kerr, R.H. Sherman, J. Low Temp. Phys. 3, 451 (1970)CrossRefADSGoogle Scholar
  15. 15.
    D.S. Greywall, Phys. Rev. B 27, 2747 (1983)CrossRefADSGoogle Scholar
  16. 16.
    D.S. Greywall, Phys. Rev. B 33, 7520 (1986)CrossRefADSGoogle Scholar
  17. 17.
    B.M. Abraham, D.W. Osborne, J. Low Temp. Phys. 5, 335 (1971)CrossRefADSGoogle Scholar
  18. 18.
    Magnicon MFFT-1 Noise ThermometerGoogle Scholar
  19. 19.
    H. Preston-Thomas, Metrologia 27, 3 (1990)CrossRefADSGoogle Scholar
  20. 20.
    J. Rysti, J. Tuoriniemi, A. Salmela, A. Sebedash, J. Phys. Conf. Ser. 400, 012065 (2012)CrossRefADSGoogle Scholar
  21. 21.
    J. Rysti, J. Tuoriniemi, A. Salmela, Phys. Rev. B 85, 134529 (2012)CrossRefADSGoogle Scholar
  22. 22.
    V.N. Lopatik, JETP 59, 284 (1984)Google Scholar
  23. 23.
    B. van den Brandt, W. Griffioen, G. Frossati, H. van Beelen, R. de Bruyn Ouboter, Physica 114B, 295 (1982)Google Scholar
  24. 24.
    P.M. Tedrow, D.M. Lee, Phys. Rev. 181, 399 (1969)CrossRefADSGoogle Scholar
  25. 25.
    V.L. Vvedenskii, JETP Lett. 24, 133 (1976)ADSGoogle Scholar
  26. 26.
    B.M. Abraham, O.G. Brandt, Y. Eckstein, J. Munarin, G. Baym, Phys. Rev. 188, 309 (1969)CrossRefADSGoogle Scholar
  27. 27.
    K. Hatakeyama, S. Noma, E. Tanaka, S.N. Burmistrov, T. Satoh, Phys. Rev. B 67, 094503 (2003)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.O.V. Lounasmaa (Low Temperature) LaboratoryAalto UniversityAaltoFinland

Personalised recommendations