Journal of Low Temperature Physics

, Volume 175, Issue 3–4, pp 614–630 | Cite as

Effect of Structural Relaxation on the In-Plane Electrical Resistance of Oxygen-Underdoped ReBa\(_2\)Cu\(_3\)O\(_{7-\delta }\) (Re = Y, Ho) Single Crystals

  • Ruslan V. Vovk
  • Nikolaj R. Vovk
  • Oleksandr V. Dobrovolskiy


The effect of jumpwise temperature variation and room-temperature storing on the basal-plane electrical resistivity \(\rho _{ab}\) of underdoped ReBa\(_2\)Cu\(_3\)O\(_{7-\delta }\) (Re = Y, Ho) single crystals is investigated. Reducing the oxygen content has been revealed to lead to the phase segregation accompanied by both, labile component diffusion and structural relaxation in the sample volume. Room-temperature storing of \({\text {YBa}}_2{\text {Cu}}_3{\text {O}}_{7-\delta }\) single crystals with different oxygen hypostoichiometries leads to a substantial widening of the rectilinear segment in \(\rho _{ab}(T)\) in conjunction with a narrowing of the temperature range of existence of the pseudogap state. It is established that the excess conductivity obeys an exponential law in a broad temperature range, while the pseudogap’s temperature dependence is described satisfactory in the framework of the BCS-BEC crossover theory. Substituting yttrium with holmium essentially effects the charge distribution and the effective interaction in CuO planes, thereby stimulating disordering processes in the oxygen subsystem. This is accompanied by a notable shift of the temperature zones corresponding to transitions of the metal-insulator type and to the regime of manifestation of the pseudogap anomaly.


Superconducting cuprates Pseudogap regime materials Annealing Phase segregation Crystal defects 


74.72.-h 84.37.+q 74.72.Kf 61.72.Cc 64.75.Lm 



This work was supported in part by the European Commission within the Seventh Framework Programme (FP7), project No. 247556.


  1. 1.
    M.A. Obolenskii, R.V. Vovk, A.V. Bondarenko, N.N. Chebotaev, Low Temp. Phys. 32, 571 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    K. Mitsen, O. Ivanenko, J. Exp. Theor. Phys. 100, 1082 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    I.A. Chaban, Phys. Tverd. Tela 5, 769 (2008)Google Scholar
  4. 4.
    A.A. Abrikosov, Phys. Rev. B 74, 180505 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    Y. Kohsaka, K. Iwaya, S. Satow, T. Hanaguri, M. Azuma, M. Takano, H. Takagi, Phys. Rev. Lett. 93, 097004 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    K. Lang, V. Madhavan, J. Hoffman, E. Hudson, H. Eisaki, S. Uchida, J. Davis, Nature 415, 412 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    R.V. Vovk, M.A. Obolenskii, A.A. Zavgorodnii, A.V. Bondarenko, I.L. Gulatis, N.N. Chebotaev, Low Temp. Phys. 33, 710 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    M.A. Obolenskii, A.V. Bondarenko, R.V. Vovk, A.A. Prodan, Low Temp. Phys. 23, 882 (1997)ADSCrossRefGoogle Scholar
  9. 9.
    R.V. Vovk, Z.F. Nazyrov, M.A. Obolenskii, I.L. Goulatis, A. Chroneos, V.M. Pinto Simoes, Philos. Mag. 91, 2291 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    P. Schleger, W. Hardy, B. Yang, Physica C 176, 261 (1991)ADSCrossRefGoogle Scholar
  11. 11.
    R. Vovk, M. Obolenskii, A. Zavgorodniy, A. Bondarenko, I. Goulatis, A. Chroneos, J. Mater. Sci: Mater. Electron. 18, 811 (2007)Google Scholar
  12. 12.
    R.V. Vovk, N.R. Vovk, O.V. Shekhovtsov, I.L. Goulatis, A. Chroneos, Supercond. Sci. Technol. 26, 085017 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    D.M. Ginsberg (ed.), Physical Properties of High-Temperature Superconductors (Mir, Moscow. (World Scientific, Singapore, 1990)Google Scholar
  14. 14.
    A.V. Bondarenko, V.A. Shklovskij, M.A. Obolenskii, R.V. Vovk, A.A. Prodan, M. Pissas, D. Niarchos, G. Kallias, Phys. Rev. B 58, 2445 (1998)ADSCrossRefGoogle Scholar
  15. 15.
    R.V. Vovk, M.A. Obolenskii, Z.F. Nazyrov, I.L. Goulatis, A. Chroneos, V.M. Pinto Simoes, J. Mater. Sci. Mater. Electron. 23, 1255 (2012)CrossRefGoogle Scholar
  16. 16.
    J.D. Jorgensen, S. Pei, P. Lightfoor, H. Shi, A.P. Paulikas, B.W. Veal, Physica C 167, 571 (1990)ADSCrossRefGoogle Scholar
  17. 17.
    R. Vovk, A. Zavgorodniy, M. Obolenskii, I. Goulatis, A. Chroneos, V.M. Pinto Simoes, J. Mater. Sci: Mater. Electron. 22, 20 (2011)Google Scholar
  18. 18.
    R. Vovk, N. Vovk, A. Samoilov, I. Goulatis, A. Chroneos, Solid State Commun. 170, 6 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    T. Krekels, H. Zou, G.V. Tendeloo, D. Wagener, M. Buchgeister, S. Hosseini, P. Herzog, Physica C 196, 363 (1992)ADSCrossRefGoogle Scholar
  20. 20.
    H. Lütgemeier, S. Schmenn, P. Meuffels, O. Storz, R. Schöllhorn, C. Niedermayer, I. Heinmaa, Y. Baikov, Physica C 267, 191 (1996)ADSCrossRefGoogle Scholar
  21. 21.
    R.V. Vovk, M.A. Obolenskii, A.A. Zavgorodniy, I.L. Goulatis, V.I. Beletskii, A. Chroneos, Physica C 469, 203 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    V.V. Moshchalkov, I.G. Muttik, N.A. Samarin, Y.D. Tretyakov, A.R. Kaul, I.E. Graboi, Y.G. Metlin, Fiz. Nizk. Temp. 14, 988 (1988)Google Scholar
  23. 23.
    N.F. Mott, Metal-insulator transitions (Mir, Moscow, 1990)Google Scholar
  24. 24.
    V.F. Gantmakher, V.N. Zverev, V.M. Teplinskii, O.I. Barkalov, J. Exp. Theor. Phys. 76, 714 (1993)ADSGoogle Scholar
  25. 25.
    M.V. Sadovskii, I.A. Nekrasov, E.Z. Kuchinskii, T. Pruschke, V.I. Anisimov, Phys. Rev. B 72, 155105 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    V.M.P. Simoes, A. Chroneos, M.A. Obolenskii, I.L. Goulatis, A.A. Zavgorodniy, R.V. Vovk, Mod. Phys. Lett. B 24, 2295 (2010)ADSCrossRefMATHGoogle Scholar
  27. 27.
    E. Babaev, H. Kleinert, Phys. Rev. B 59, 12083 (1999)ADSCrossRefGoogle Scholar
  28. 28.
    Y.A. Izyumov, E.Z. Kurmaev, Phys. Usp. 178, 1307 (2008)CrossRefGoogle Scholar
  29. 29.
    D.H.S. Smith, R.V. Vovk, C.D.H. Williams, A.F.G. Wyatt, New J. Phys. 8, 128 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    I.N. Adamenko, K.E. Nemchenko, V.I. Tsyganok, A.I. Chervanev, Low Temp. Phys. 20, 498 (1994)ADSGoogle Scholar
  31. 31.
    R.V. Vovk, C.D.H. Williams, A.F.G. Wyatt, Phys. Rev. B 69, 144524 (2004)ADSCrossRefGoogle Scholar
  32. 32.
    A.J. Matthews, K.V. Kavokin, A. Usher, M.E. Portnoi, M. Zhu, J.D. Gething, M. Elliott, W.G. Herrenden-Harker, K. Phillips, D.A. Ritchie, M.Y. Simmons, C.B. Sorensen, O.P. Hansen, O.A. Mironov, M. Myronov, D.R. Leadley, M. Henini, Phys. Rev. B 70, 075317 (2004)ADSCrossRefGoogle Scholar
  33. 33.
    P.J. Curran, V.V. Khotkevych, S.J. Bending, A.S. Gibbs, S.L. Lee, A.P. Mackenzie, Phys. Rev. B 84, 104507 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    R. Beyers, B.T. Ahn, G. Gorman, V.Y. Lee, S.S.P. Parkin, M.L. Ramirez, K.P. Roche, J.E. Vazquez, T.M. Gur, R.A. Huggins, Nature 340, 619 (1989)ADSCrossRefGoogle Scholar
  35. 35.
    D. de Fontaine, G. Ceder, M. Asta, J. Less Common Met. 108, 164–165 (1990)Google Scholar
  36. 36.
    V.Y. Suchorevskiy, I.V. Zhiharev, S.I. Chochlova, Preprint, DonIFT (1990)Google Scholar
  37. 37.
    M.R. Presland, J.L. Tallon, R.G. Buckley, R.S. Liu, N.E. Flower, Physica C 176, 95 (1991)ADSCrossRefGoogle Scholar
  38. 38.
    J.L. Tallon, C. Bernhard, H. Shaked, R.L. Hitterman, J.D. Jorgensen, Phys. Rev. B 51, 12911 (1995)ADSCrossRefGoogle Scholar
  39. 39.
    B.W. Veal, H. You, A.P. Paulikas, H. Shi, Y. Fang, J.W. Downey, Phys. Rev. B 42, 4770 (1990)ADSCrossRefGoogle Scholar
  40. 40.
    S. Sadewasser, J.S. Schilling, A.P. Paulikas, B.W. Veal, Phys. Rev. B 61, 741 (2000)ADSCrossRefGoogle Scholar
  41. 41.
    R.V. Vovk, M.A. Obolenskii, A.V. Bondarenko, I.L. Goulatis, A.V. Samoilov, A. Chroneos, V.M.P. Simoes, J. Alloys Compd. 464, 58 (2008)CrossRefGoogle Scholar
  42. 42.
    V.V. Moshchalkov, L. Trappeniers, J. Vanacken, Physica C 887, 341–348 (2000)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ruslan V. Vovk
    • 1
  • Nikolaj R. Vovk
    • 1
  • Oleksandr V. Dobrovolskiy
    • 1
    • 2
  1. 1.V. Karazin National UniversityKharkivUkraine
  2. 2.Goethe UniversityFrankfurt am MainGermany

Personalised recommendations