Advertisement

Journal of Low Temperature Physics

, Volume 175, Issue 5–6, pp 799–812 | Cite as

Electronic Coolers Based on Superconducting Tunnel Junctions: Fundamentals and Applications

  • H. CourtoisEmail author
  • F. W. J. Hekking
  • H. Q. Nguyen
  • C. B. Winkelmann
Article

Abstract

Thermo-electric transport at the nano-scale is a rapidly developing topic, in particular in superconductor-based hybrid devices. In this review paper, we first discuss the fundamental principles of electronic cooling in mesoscopic superconducting hybrid structures, the related limitations and applications. We review recent work performed in Grenoble on the effects of Andreev reflection, photonic heat transport, phonon cooling, as well as on an innovative fabrication technique for powerful coolers.

Keywords

Electronic cooling Superconducting tunnel junctions  Mesoscopic physics Nanosciences 

Notes

Acknowledgments

This work was funded by the EU FRP7 low temperature infrastructure MICROKELVIN and by Institut universitaire de France. Samples were fabricated at Nanofab platform — CNRS. This work has been led in collaboration with S. Rajauria, L. M. A. Pascal, A. Fay, B. Pannetier, A. Vasenko, T. Crozes and T. Fournier. We acknowledge fruitful discussions along the years with J. P. Pekola, F. Giazotto and M. Meschke.

References

  1. 1.
    M. Tinkham, Introduction to Superconductivity (Mc-Graw Hill, New York, 1996)Google Scholar
  2. 2.
    M. Nahum, J. Martinis, Appl. Phys. Lett. 63, 3075 (1993)CrossRefADSGoogle Scholar
  3. 3.
    M. Nahum, T.M. Eiles, J.M. Martinis, Appl. Phys. Lett. 65, 3123 (1994)CrossRefADSGoogle Scholar
  4. 4.
    M.M. Leivo, J.P. Pekola, D.V. Averin, Appl. Phys. Lett. 68, 1996 (1996)CrossRefADSGoogle Scholar
  5. 5.
    H. Courtois, S. Rajauria, P. Gandit, F.W.J. Hekking, B. Pannetier, J. Low Temp. Phys. 153, 325 (2008)CrossRefADSGoogle Scholar
  6. 6.
    F.C. Wellstood, C. Urbina, J. Clarke, Phys. Rev. B 49, 5942 (1994)CrossRefADSGoogle Scholar
  7. 7.
    M. Meschke, J.P. Pekola, F. Gay, R.E. Rapp, H. Godfrin, J. Low Temp. Phys. 134, 1119 (2004). and references thereinCrossRefADSGoogle Scholar
  8. 8.
    J.P. Pekola, A.J. Manninen, M.M. Leivo, K. Arutyunov, J.K. Suoknuuti, T.I. Suppula, B. Collaudin, Phys. B 280, 485 (2000)CrossRefADSGoogle Scholar
  9. 9.
    F. Giazotto, T.T. Heikkilä, A. Luukanen, A.M. Savin, J.P. Pekola, Rev. Mod. Phys. 78, 217 (2006)CrossRefADSGoogle Scholar
  10. 10.
    J.T. Muhonen, M. Meschke, J.P. Pekola, Rep. Prog. Phys. 75, 046501 (2012)CrossRefADSGoogle Scholar
  11. 11.
    A.M. Clark, N.A. Miller, A. Williams, S.T. Ruggiero, G.C. Hilton, L.R. Vale, J.A. Beall, K.D. Irwin, J.N. Ullom, Appl. Phys. Lett. 84, 625 (2004)CrossRefADSGoogle Scholar
  12. 12.
    N.A. Miller, G.C. ONeil, J.A. Beall, G.C. Hilton, K.D. Irwin, D.R. Schmidt, L.R. Vale, J.N. Ullom, Appl. Phys. Lett. 92, 163501 (2008)CrossRefADSGoogle Scholar
  13. 13.
    H.Q. Nguyen, T. Aref, V.J. Kauppila, M. Meschke, C.B. Winkelmann, H. Courtois, J.P. Pekola, New J. Phys 15, 085013 (2013)CrossRefADSGoogle Scholar
  14. 14.
    P.J. Lowell, G.C. O’Neil, J.M. Underwood, J.N. Ullom, Appl. Phys. Lett. 102, 082601 (2013)CrossRefADSGoogle Scholar
  15. 15.
    J.P. Pekola, D.V. Anghel, T.I. Suppula, J.K. Suoknuuti, A.J. Manninen, M. Manninen, Appl. Phys. Lett. 76, 2782 (2000)CrossRefADSGoogle Scholar
  16. 16.
    S. Rajauria, H. Courtois, B. Pannetier, Phys. Rev. B 80, 214521 (2009)CrossRefADSGoogle Scholar
  17. 17.
    S. Rajauria, L.M.A. Pascal, Ph Gandit, F.W.J. Hekking, B. Pannetier, H. Courtois, Phys. Rev. B 85, 020505(R) (2012)CrossRefADSGoogle Scholar
  18. 18.
    H. Courtois, Ph Gandit, B. Pannetier, Phys. Rev. B 51, 9360 (1995)CrossRefADSGoogle Scholar
  19. 19.
    A.I. Larkin, Y.N. Ovchinnikov, in Nonequilibrium Superconductivity, ed. by D.N. Langenberg, A.I. Larkin (Elsevier, Amsterdam, 1986)Google Scholar
  20. 20.
    W. Belzig, F.K. Wilhelm, C. Bruder, G. Schön, A.D. Zaikin, Superlatt. Microstruct. 25, 1251 (1999)CrossRefADSGoogle Scholar
  21. 21.
    A.S. Vasenko, E.V. Bezuglyi, H. Courtois, F.W.J. Hekking, Phys. Rev. B 81, 094513 (2010)CrossRefADSGoogle Scholar
  22. 22.
    A.S. Vasenko, F.W.J. Hekking, J. Low Temp. Phys. 154, 231 (2009)CrossRefADSGoogle Scholar
  23. 23.
    J.P. Pekola, T.T. Heikkilä, A.M. Savin, J.T. Flyktman, F. Giazotto, F.W.J. Hekking, Phys. Rev. Lett. 92, 056804 (2004)CrossRefADSGoogle Scholar
  24. 24.
    A.F. Andreev, Sov. Phys. J. Exp. Theor. Phys. 19, 1228 (1964)Google Scholar
  25. 25.
    D. Saint-James, J. Phys. 25, 899 (1964)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    B.J. van Wees, P. de Vries, P. Magnée, T.M. Klapwijk, Phys. Rev. Lett. 69, 510 (1992)CrossRefADSGoogle Scholar
  27. 27.
    F.W.J. Hekking, Y.V. Nazarov, Phys. Rev. Lett. 71, 1625 (1993)CrossRefADSGoogle Scholar
  28. 28.
    F.W.J. Hekking, Y.V. Nazarov, Phys. Rev. B 49, 6847 (1994)CrossRefADSGoogle Scholar
  29. 29.
    A. Kastalsky, A.W. Kleinsasser, L.H. Greene, R. Bhat, F.P. Milliken, J.P. Harbison, Phys. Rev. Lett. 67, 3026 (1991)CrossRefADSGoogle Scholar
  30. 30.
    S. Rajauria, P. Gandit, T. Fournier, F.W.J. Hekking, B. Pannetier, H. Courtois, Phys. Rev. Lett. 100, 207002 (2008)CrossRefADSGoogle Scholar
  31. 31.
    H. Courtois, P. Gandit, B. Pannetier, D. Mailly, Superlatt. Microstruct. 25, 721 (1999)CrossRefADSGoogle Scholar
  32. 32.
    D.R. Schmidt, R.J. Schoelkopf, A.N. Cleland, Phys. Rev. Lett. 93, 045901 (2004)CrossRefADSGoogle Scholar
  33. 33.
    M. Meschke, W. Guichard, J.P. Pekola, Nature 444, 187 (2006)CrossRefADSGoogle Scholar
  34. 34.
    A.V. Timofeev, M. Helle, M. Meschke, M. Möttönen, J.P. Pekola, Phys. Rev. Lett. 102, 200801 (2009)CrossRefADSGoogle Scholar
  35. 35.
    J.B. Pendry, J. Phys. A 16, 2161 (1983)CrossRefMathSciNetADSGoogle Scholar
  36. 36.
    L.M.A. Pascal, H. Courtois, F.W.J. Hekking, Phys. Rev. B 83, 125113 (2011)CrossRefADSGoogle Scholar
  37. 37.
    C.W.J. Beenakker, M. Kindermann, Y.V. Nazarov, Phys. Rev. Lett. 90, 176802 (2003)CrossRefADSGoogle Scholar
  38. 38.
    A. Clark, N. Miller, A. Williams, S. Ruggiero, G. Hilton, L. Vale, J. Beall, K. Irwin, J.N. Ullom, Appl. Phys. Lett. 86, 173508 (2005)CrossRefADSGoogle Scholar
  39. 39.
    N. Vercruyssen, R. Barends, T.M. Klapwijk, J.T. Muhonen, M. Meschke, J.P. Pekola, Appl. Phys. Lett. 99, 062509 (2011)CrossRefGoogle Scholar
  40. 40.
    P.J. Koppinen, I.J. Maasilta, Phys. Rev. Lett. 102, 165502 (2009)CrossRefADSGoogle Scholar
  41. 41.
    J.T. Muhonen, A.O. Niskanen, M. Meschke, Y.A. Pashkin, J. Tsai, L. Sainiemi, S. Franssila, J.P. Pekola, Appl. Phys. Lett. 94, 073101 (2009)CrossRefADSGoogle Scholar
  42. 42.
    J.M. Underwood, P.J. Lowell, G.C. ONeil, J.N. Ullom, Phys. Rev. Lett. 107, 255504 (2011)CrossRefADSGoogle Scholar
  43. 43.
    S.-X. Qu, A.N. Cleland, M.R. Geller, Phys. Rev. B 72, 224301 (2005)CrossRefADSGoogle Scholar
  44. 44.
    F.W.J. Hekking, A.O. Niskanen, J.P. Pekola, Phys. Rev. B 77, 033401 (2008)CrossRefADSGoogle Scholar
  45. 45.
    J.T. Karvonen, I.J. Maasilta, Phys. Rev. Lett. 99, 145503 (2007)CrossRefADSGoogle Scholar
  46. 46.
    L.M.A. Pascal, A. Fay, C.B. Winkelmann, H. Courtois, Phys. Rev. B 88, 100502(R) (2013)CrossRefADSGoogle Scholar
  47. 47.
    J.N. Ullom, P. Fisher, Phys. B 284, 2036 (2000)CrossRefADSGoogle Scholar
  48. 48.
    E.T. Swartz, R.O. Pohl, Rev. Mod. Phys. 61, 605 (1989)CrossRefADSGoogle Scholar
  49. 49.
    S. Rajauria, P.S. Luo, T. Fournier, F.W.J. Hekking, H. Courtois, B. Pannetier, Phys. Rev. Lett. 99, 047004 (2007)CrossRefADSGoogle Scholar
  50. 50.
    G.C. O’Neil, P.J. Lowell, J.M. Underwood, J.N. Ullom, Phys. Rev. B 85, 134504 (2012)CrossRefADSGoogle Scholar
  51. 51.
    H.Q. Nguyen, L.M.A. Pascal, Z.H. Peng, O. Buisson, B. Gilles, C.B. Winkelmann, H. Courtois, Appl. Phys. Lett. 100, 252602 (2012)CrossRefADSGoogle Scholar
  52. 52.
    H. Q. Nguyen et al, unpublished.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • H. Courtois
    • 1
    • 2
    Email author
  • F. W. J. Hekking
    • 4
    • 5
  • H. Q. Nguyen
    • 1
    • 2
    • 3
  • C. B. Winkelmann
    • 1
    • 2
  1. 1.Université Grenoble Alpes, Institut NéelGrenobleFrance
  2. 2.Institut Néel, CNRSGrenobleFrance
  3. 3.O.V. Lounasmaa LaboratoryAalto UniversityHelsinkiFinland
  4. 4.Université Grenoble AlpesLPMMCGrenobleFrance
  5. 5.CNRS, LPMMCGrenobleFrance

Personalised recommendations