Advertisement

Journal of Low Temperature Physics

, Volume 176, Issue 5–6, pp 860–869 | Cite as

Intervalley Scattering of Hot Electrons in Germanium at Millikelvin Temperatures

  • A. BroniatowskiEmail author
Article

Abstract

A method is presented to determine the field dependence of the intervalley scattering rate for hot electrons in germanium, based on an analysis of electron straggle in a detector crystal fitted with segmented electrodes. Measurements in high-purity and in lightly doped n- and p-type crystals at millikelvin temperatures demonstrate the dominant role of impurity scattering at low field (\(<\sim \)a few V/cm), whereas phonon scattering takes precedence at higher field intensities. An analysis of the experimental data by reference to past investigations of the acoustoelectric effect in germanium strongly suggests that the impurities involved are the dopant species in the neutral state.

Keywords

Germanium cryogenic detector Hot electron transport  Dark matter 

Notes

Acknowledgments

I am indebted to the members of the cryogenic detector group at CSNSM and to J. Domange, E. Olivieri and M.C. Piro especially, for their contribution to this work.

References

  1. 1.
    W. Sasaki, M. Shibuya, K. Mizuguchi, J. Phys. Soc. Jpn. 13, 456 (1958)CrossRefADSGoogle Scholar
  2. 2.
    E.M. Conwell, High field transport in semiconductors, in Solid state physics suppl. 9, ed. by F. Seitz, D. Turnbull (Academic Press, New York, 1967)Google Scholar
  3. 3.
    T. Shutt et al., Phys. Rev. Lett. 69, 3531 (1992)CrossRefADSGoogle Scholar
  4. 4.
    A. Broniatowski et al., Phys. Lett. B 681, 305 (2009)CrossRefADSGoogle Scholar
  5. 5.
    S. Marnieros et al., Proc. 13th Int. Workshop on Low Temperature Detectors, Stanford, USA, 2009. AIP Conf. Proc. 1185, 635 (2009)Google Scholar
  6. 6.
    E. Olivieri et al., J. Low Temp. Phys. 167, 1137 (2012)CrossRefADSGoogle Scholar
  7. 7.
    G. Weinreich, T.M. Sanders, H.G. White, Phys. Rev. 114, 33 (1959)CrossRefADSGoogle Scholar
  8. 8.
    E. Olivieri et al., Proc. 13th Int. Workshop on Low Temperature Detectors, Stanford, USA, 2009. AIP Conf. Proc. 1185, 310 (2009)Google Scholar
  9. 9.
    J. Domange et al., Proc. 13th Int. Workshop on Low Temperature Detectors, Stanford, USA, 2009. AIP Conf. Proc. 1185, 314 (2009)Google Scholar
  10. 10.
    A. Broniatowski et al., in this Special Issue LTD15 in J. Low Temp. Phys.Google Scholar
  11. 11.
    M.I. Nathan, Phys. Rev. 130, 2201 (1963)CrossRefADSGoogle Scholar
  12. 12.
    C. Herring, E. Vogt, Phys. Rev. 101, 944 (1956)CrossRefzbMATHADSGoogle Scholar
  13. 13.
    M.C. Piro et al., in this Special Issue LTD15 in J. Low Temp. Phys.Google Scholar
  14. 14.
    N.A. Zakhlenyuk, V.V. Mitin, Sov. Phys. Semicond. 21, 384 (1986)Google Scholar
  15. 15.
    K. Seeger, Semiconductor physics, 6th edn. (Springer, Berlin, 1997)CrossRefzbMATHGoogle Scholar
  16. 16.
    R.A. Laff, H.Y. Fan, Phys. Rev. 112, 317 (1958)CrossRefADSGoogle Scholar
  17. 17.
    S. Ramo, Proc. IRE 27, 584 (1939)CrossRefGoogle Scholar
  18. 18.
    L. Reggiani et al., Phys. Rev. B 16, 2781 (1977)CrossRefADSGoogle Scholar
  19. 19.
    V. Aubry-Fortuna, P. Dollfus, private communication (2010)Google Scholar
  20. 20.
    E.E. Haller, W.L. Hansen, F.S. Goulding, Adv. Phys. 30, 93 (1981)CrossRefADSGoogle Scholar
  21. 21.
    C. Clayes, E. Simoen (eds) Germanium-based technologies: from materials to devices, (Elzevier, Amsterdam, 2007)Google Scholar
  22. 22.
    P. Clauws, private communication (2012)Google Scholar
  23. 23.
    A. Blondeel, P. Clauws, J. Appl. Phys. 86, 940 (1999)CrossRefADSGoogle Scholar
  24. 24.
    E.M. Gershenzon et al., Sov. Phys. Usp. 23, 684 (1980)CrossRefADSGoogle Scholar
  25. 25.
    E.M. Gershenzon, Y.P. Ladyzhinskii, A.P. Melnikov, JETP Lett. 14, 256 (1971)ADSGoogle Scholar
  26. 26.
    E.M. Gershenzon, Y.P. Ladyzhinskii, A.P. Melnikov, Sov. Phys. Semicond. 7, 746 (1973)Google Scholar
  27. 27.
    V.N. Abakumov, V.I. Perel, I.N. Yassievich, Nonradiative recombination in semiconductors, (North-Holland, Oxford, 1991) and references thereinGoogle Scholar
  28. 28.
    J. Domange et al., J. Low Temp. Phys. 167, 1131 (2012)CrossRefADSGoogle Scholar
  29. 29.
    V. Aubry-Fortuna, P. Dollfus, J. Appl. Phys. 108, 123706 (2010)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse (CSNSM)IN2P3/CNRS et Université Paris XIOrsayFrance

Personalised recommendations