Advertisement

Journal of Low Temperature Physics

, Volume 176, Issue 3–4, pp 285–290 | Cite as

Transition-Edge Sensors for Particle Induced X-ray Emission Measurements

  • M. R. J. Palosaari
  • K. M. Kinnunen
  • J. Julin
  • M. Laitinen
  • M. Napari
  • T. Sajavaara
  • W. B. Doriese
  • J. Fowler
  • C. Reintsema
  • D. Swetz
  • D. Schmidt
  • J. Ullom
  • I. J. Maasilta
Article

Abstract

In this paper we present a new measurement setup, where a transition-edge sensor detector array is used to detect X-rays in particle induced X-ray emission (PIXE) measurements with a 2 MeV proton beam. Transition-edge sensors offer orders of magnitude improvement in energy resolution compared to conventional silicon or germanium detectors, making it possible to recognize spectral lines in materials analysis that have previously been impossible to resolve, and to get chemical information from the elements. Our sensors are cooled to the operation temperature (\(\sim \)65 mK) with a cryogen-free adiabatic demagnetization refrigerator, which houses a specially designed X-ray snout that has a vacuum tight window to couple in the radiation. For the best pixel, the measured instrumental energy resolution was 3.06 eV full width at half maximum at 5.9 keV. We discuss the current status of the project, benefits of transition-edge sensors when used in PIXE spectroscopy, and the results from the first measurements.

Keywords

Transition-edge sensor TES Particle induced X-ray emission (PIXE) 

Notes

Acknowledgments

This work was supported by the Finnish Funding Agency for Technology and Innovation TEKES, Academy of Finland Project no. 260880 and Academy of Finland Center of Excellence in Nuclear and Accelerator Based Physics (ref. 251353). M. Palosaari would personally like to thank the National Graduate School in Materials Science for funding.

References

  1. 1.
    S.A.E. Johansson, in Particle-Induced X-ray Emission Spectrometry (PIXE), Volume 133 in Chemical Analysis: A Series of Monographs on Analytical Chemistry and Its Applications, ed. by S.A.E. Johansson, J.L. Campbell, K.G. Malmqvist, (Wiley, New York, 1995)Google Scholar
  2. 2.
    S.M. Tang, S.H. Tang, T.S. Tay, A.T. Retty, Appl. Spectrosc. 42, 44 (1988)ADSCrossRefGoogle Scholar
  3. 3.
    N. Grassi, P. Bonanni, C. Mazzotta, A. Migliori, P.A. Mandò, X-ray Spectrom. 38, 301 (2009)CrossRefGoogle Scholar
  4. 4.
    Ph Moretto, Y. Llabador, M. Simonoff, L. Razafindrabe, M. Bara, A. Guiet-Bara, Nucl. Instr. Method B 77, 275 (1993)ADSCrossRefGoogle Scholar
  5. 5.
    J. Hasegawa, T. Tada, Y. Oguri, M. Hayashi, T. Toriyama, T. Kawabata, K. Masai, Rev. Sci. Instrum. 78, 073105 (2007)Google Scholar
  6. 6.
    S.H. Moseley, J. Mather, D. McCammon, J. Appl. Phys. 56, 1257 (1984)ADSCrossRefGoogle Scholar
  7. 7.
    K. Irwin, G. Hilton, in Cryogenic Particle Detection, ed. by Ch. Enss (Springer, Berlin, 2005), p. 63Google Scholar
  8. 8.
    M.A. Reis, P.C. Chaves, A. Taborda, X-ray Spectrom. 40, 141 (2011)CrossRefGoogle Scholar
  9. 9.
    J.N. Ullom, J.A. Beall, W.B. Doriese, W.D. Duncan, L. Ferreira, G.C. Hilton, K.D. Irwin, C.D. Reintsema, L.R. Vale, Appl. Phys. Lett. 87, 194103 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    P.G. de Gennes, Superconductivity of Metals and Alloys (Redwood City, Addison-Wesley, 1994)Google Scholar
  11. 11.
    P.A.J. de Korte, J. Beyer, S. Deiker, G.C. Hilton, K.D. Irwin, M. MacIntosh, S. Woo Nam, C.D. Reintsema, L.R. Vale, M.E. Huber, Rev. Sci. Instrum. 74, 8 (2003)Google Scholar
  12. 12.
    K. Jun, Nucl. Instrum. Methods B 75, 3 (1993)ADSCrossRefGoogle Scholar
  13. 13.
    J.A. Bearden, Rev. Mod. Phys. 39, 78 (1967)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • M. R. J. Palosaari
    • 1
  • K. M. Kinnunen
    • 1
  • J. Julin
    • 2
  • M. Laitinen
    • 2
  • M. Napari
    • 2
  • T. Sajavaara
    • 2
  • W. B. Doriese
    • 3
  • J. Fowler
    • 3
  • C. Reintsema
    • 3
  • D. Swetz
    • 3
  • D. Schmidt
    • 3
  • J. Ullom
    • 3
  • I. J. Maasilta
    • 1
  1. 1.Department of Physics, Nanoscience CenterUniversity of JyväskyläJyväskyläFinland
  2. 2.Accelerator Laboratory, Department of PhysicsUniversity of JyväskyläJyväskyläFinland
  3. 3.National Institute of Standards and TechnologyBoulderUSA

Personalised recommendations