Journal of Low Temperature Physics

, Volume 175, Issue 1–2, pp 324–330

The Decay of Forced Turbulent Coflow of He II Past a Grid

Article

Abstract

We present an experimental study of the decay of He II turbulence created mechanically, by a bellows-induced flow past a stationary grid in a 7×7 mm2 superfluid wind tunnel. The temporal decay L(t) originating from various steady-states of vortex line length per unit volume, L0, has been observed based on measurements of the attenuation of second-sound, in the temperature range 1.17 K<T<1.95 K. Each presented decay curve is the average of up to 150 single decay events. We find that, independently of T and L0, within seconds past the sudden stop of the drive, all the decay curves show a universal behavior lasting up to 200 s, of the form L(t)∝(tt0)−3/2, where t0 is the virtual origin time. From this decay process we deduce the effective kinematic viscosity of turbulent He II. We compare our results with the bench-mark Oregon towed grid experiments and, despite our turbulence being non-homogeneous, find strong similarities.

Keywords

Quantum turbulence Decay Superfluid 4He Second-sound Grid 

References

  1. 1.
    W.F. Vinen, J.J. Niemela, J. Low Temp. Phys. 128, 167 (2002) ADSCrossRefGoogle Scholar
  2. 2.
    L. Skrbek, K.R. Sreenivasan, Phys. Fluids 24, 011301 (2012) ADSCrossRefGoogle Scholar
  3. 3.
    S.K. Nemirovskii, Phys. Rep. 524, 85 (2013) ADSCrossRefMathSciNetGoogle Scholar
  4. 4.
    W. Guo, S.B. Cahn, J.A. Nikkel, W.F. Vinen, D.N. McKinsey, Phys. Rev. Lett. 105, 045301 (2010) ADSCrossRefGoogle Scholar
  5. 5.
    M. Smith, R.J. Donnelly, N. Goldenfeld, W.F. Vinen, Phys. Rev. Lett. 71, 2583 (1993) ADSCrossRefGoogle Scholar
  6. 6.
    S. Stalp, L. Skrbek, R. Donnelly, Phys. Rev. Lett. 82, 4831 (1999) ADSCrossRefGoogle Scholar
  7. 7.
    L. Skrbek, J.J. Niemela, R. Donnelly, Phys. Rev. Lett. 85, 2973 (2000) ADSCrossRefGoogle Scholar
  8. 8.
    J.J. Niemela, K.R. Sreenivasan, R.J. Donnelly, J. Low Temp. Phys. 138, 534 (2005) ADSCrossRefGoogle Scholar
  9. 9.
    L. Skrbek, K.R. Sreenivasan, How similar is quantum turbulence to classical turbulence? in Ten Chapters in Turbulence, ed. by P.A. Davidson, Y. Kaneda, K.R. Sreenivasan (Cambridge University Press, Cambridge, 2013) Google Scholar
  10. 10.
    S. Babuin, M. Stammeier, E. Varga, M. Rotter, L. Skrbek, Phys. Rev. B 86, 134515 (2012) ADSCrossRefGoogle Scholar
  11. 11.
    R.J. Donnelly, C.F. Barenghi, J. Phys. Chem. Ref. Data 27, 1217 (1998) ADSCrossRefGoogle Scholar
  12. 12.
    W.F. Vinen, Proc. R. Soc. 242, 493 (1957) ADSCrossRefGoogle Scholar
  13. 13.
    L. Skrbek, S. Stalp, Phys. Fluids 12, 1997 (2000) ADSCrossRefGoogle Scholar
  14. 14.
    W.F. Vinen, Phys. Rev. B 61, 1410 (2000) ADSCrossRefGoogle Scholar
  15. 15.
    A.I. Golov, P.M. Walmsley, J. Low Temp. Phys. 156, 51 (2009) ADSCrossRefGoogle Scholar
  16. 16.
    W.F. Vinen, J. Low Temp. Phys. 161, 419 (2010) ADSCrossRefGoogle Scholar
  17. 17.
    T.V. Chagovets, A.V. Gordeev, L. Skrbek, Phys. Rev. E 76, 027301 (2007) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Institute of Physics ASCRPragueCzech Republic
  2. 2.Faculty of Mathematics and PhysicsCharles University in PraguePragueCzech Republic

Personalised recommendations