Journal of Low Temperature Physics

, Volume 175, Issue 1–2, pp 17–30 | Cite as

Superfluid Phases of 3He in a Periodic Confined Geometry

  • J. J. WimanEmail author
  • J. A. Sauls


Predictions and discoveries of new phases of superfluid 3He in confined geometries, as well as novel topological excitations confined to surfaces and edges of near a bounding surface of 3He, are driving the fields of superfluid 3He infused into porous media, as well as the fabrication of sub-micron to nano-scale devices for controlled studies of quantum fluids. In this report we consider superfluid 3He confined in a periodic geometry, specifically a two-dimensional lattice of square, sub-micron-scale boundaries (“posts”) with translational invariance in the third dimension. The equilibrium phase(s) are inhomogeneous and depend on the microscopic boundary conditions imposed by a periodic array of posts. We present results for the order parameter and phase diagram based on strong pair breaking at the boundaries. The ordered phases are obtained by numerically minimizing the Ginzburg-Landau free energy functional. We report results for the weak-coupling limit, appropriate at ambient pressure, as a function of temperature T, lattice spacing L, and post edge dimension, d. For all d in which a superfluid transition occurs, we find a transition from the normal state to a periodic, inhomogeneous “polar” phase with \(T_{c_{1}} < T_{c}\) for bulk superfluid 3He. For fixed lattice spacing, L, there is a critical post dimension, d c , above which only the periodic polar phase is stable. For d<d c we find a second, low-temperature phase onsetting at \(T_{c_{2}} < T_{c_{1}}\) from the polar phase to a periodic “B-like” phase. The low temperature phase is inhomogeneous, anisotropic and preserves time-reversal symmetry, but unlike the bulk B-phase has only \(\mathtt{D}_{\text{4h}}^{\text{L}+\text{S}}\) point symmetry.


Superfluid 3He Confined quantum liquids Phase transitions 



This research is supported by the National Science Foundation (Grant DMR-1106315). We thank David Ferguson for many discussions and critique during the course of this work.


  1. 1.
    V. Ambegaokar, P. de Gennes, D. Rainer, Phys. Rev. A 9, 2676 (1975) ADSCrossRefGoogle Scholar
  2. 2.
    D. Rainer, M. Vuorio, J. Phys. C, Solid State Phys. 10, 3093 (1977) ADSCrossRefGoogle Scholar
  3. 3.
    P. de Gennes, D. Rainer, Phys. Lett. A 46, 429 (1974) ADSCrossRefGoogle Scholar
  4. 4.
    N.D. Mermin, T.-L. Ho, Phys. Rev. Lett. 36, 594 (1976) ADSCrossRefGoogle Scholar
  5. 5.
    P.M. Walmsley, A.I. Golov, Phys. Rev. Lett. 109, 215301 (2012) ADSCrossRefGoogle Scholar
  6. 6.
    T. Kunimatsu, H. Nema, R. Ishiguro, M. Kubota, T. Takagi, Y. Sasaki, O. Ishikawa, J. Low Temp. Phys. 171, 280 (2013) ADSCrossRefGoogle Scholar
  7. 7.
    L.J. Buchholtz, G. Zwicknagl, Phys. Rev. B 23, 5788 (1981) ADSCrossRefGoogle Scholar
  8. 8.
    Y. Nagato, M. Yamamoto, K. Nagai, J. Low Temp. Phys. 110, 1135 (1998) ADSCrossRefGoogle Scholar
  9. 9.
    A. Vorontsov, J.A. Sauls, Phys. Rev. B 68, 064508 (2003) ADSCrossRefGoogle Scholar
  10. 10.
    L.H. Kjäldman, J. Kurkijärvi, D. Rainer, J. Low Temp. Phys. 33, 577 (1978) ADSCrossRefGoogle Scholar
  11. 11.
    A.B. Vorontsov, J.A. Sauls, Phys. Rev. Lett. 98, 045301 (2007) ADSCrossRefGoogle Scholar
  12. 12.
    M. Freeman, R.S. Germain, E.V. Thuneberg, R.C. Richardson, Phys. Rev. Lett. 60, 596 (1988) ADSCrossRefGoogle Scholar
  13. 13.
    J. Xu, B.C. Crooker, Phys. Rev. Lett. 65, 3005 (1990) ADSCrossRefGoogle Scholar
  14. 14.
    A. Schechter, R.W. Simmonds, R.E. Packard, J.C. Davis, Nature 396, 554 (1998) ADSCrossRefGoogle Scholar
  15. 15.
    L.V. Levitin, R.G. Bennett, A. Casey, B. Cowan, J. Saunders, D. Drung, T. Schurig, J.M. Parpia, Science 340, 6 (2013) CrossRefGoogle Scholar
  16. 16.
    M. Gonzalez, P. Zheng, E. Garcell, Y. Lee, H.B. Chan, Rev. Sci. Instrum. 84, 025003 (2013) ADSCrossRefGoogle Scholar
  17. 17.
    N. Zhelev, R. Bennett, R. Ilic, J. Parpia, L. Levitin, A. Casey, J. Saunders, Bull. Am. Phys. Soc. 58 (2013) Google Scholar
  18. 18.
    D. Rainer, J.W. Serene, Phys. Rev. B 13, 4745 (1976) ADSCrossRefGoogle Scholar
  19. 19.
    D. Vollhardt, P. Wölfle, The Superfluid Phases of 3He (Taylor & Francis, New York, 1990) Google Scholar
  20. 20.
    J.A. Sauls, Phys. Rev. B 84, 214509 (2011) ADSCrossRefGoogle Scholar
  21. 21.
    E.V. Surovtsev, I.A. Fomin, J. Low Temp. Phys. 150, 487 (2008) ADSCrossRefGoogle Scholar
  22. 22.
    O.C. Zienkiewicz, R.L. Taylor, J.Z. Zhu, The Finite Element Method: Its Basis and Fundamentals (Butterworth-Heinemann, Stoneham, 2005) Google Scholar
  23. 23.
    J.R. Shewchuk, in Applied Computational Geometry: Towards Geometric Engineering, ed. by M.C. Lin, D. Manocha. Lecture Notes in Computer Science, vol. 1148 (Springer, Berlin, 1996), pp. 203–222 CrossRefGoogle Scholar
  24. 24.
    M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1970) Google Scholar
  25. 25.
    W.W. Hager, H. Zhang, ACM Trans. Math. Softw. 32, 113 (2006) CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Physics & AstronomyNorthwestern UniversityEvanstonUSA

Personalised recommendations