Advertisement

Journal of Low Temperature Physics

, Volume 175, Issue 1–2, pp 442–448 | Cite as

Modal Decomposition in Goalpost Micro/Nano Electro-Mechanical Devices

  • E. Collin
  • M. Defoort
  • K. J. Lulla
  • J. Guidi
  • S. Dufresnes
  • H. Godfrin
Article

Abstract

We have studied the first three symmetric out-of-plane flexural resonance modes of a goalpost silicon micro-mechanical device. Measurements have been performed at 4.2 K in vacuum, demonstrating high Qs and good linear properties. Numerical simulations have been realized to fit the resonance frequencies and produce the mode shapes. These mode shapes are complex, since they involve distortions of two coupled orthogonal bars. Nonetheless, analytic expressions have been developed to reproduce these numerical results, with no free parameters. Owing to their generality they are extremely helpful, in particular to identify the parameters which may limit the performances of the device. The overall agreement is very good, and has been verified on our nano-mechanical version of the device.

Keywords

Dynamics Micro/nano-mechanics Resonance modes 

Notes

Acknowledgements

We would like to thank B. Fernandez, T. Fournier, C. Blanc and O. Bourgeois for help with the fabrication of the devices, and M. Nũnez-Regueiro for financially supporting the ANSYS project via ANR grant TetraFer ANR-09-BLAN-0211. We acknowledge the support from MICROKELVIN, the EU FRP7 low temperature infrastructure grant 228464, and of the 2010 ANR French grant QNM No. 0404 01.

References

  1. 1.
    A.M. Guénault, V. Keith, C.J. Kennedy, S.G. Mussett, G.R. Pickett, J. Low Temp. Phys. 62, 511 (1986) ADSCrossRefGoogle Scholar
  2. 2.
    J. Jäger, B. Schuderer, W. Schoepe, Phys. Rev. Lett. 74, 566 (1995) ADSCrossRefGoogle Scholar
  3. 3.
    R. Blaauwgeers, M. Blazkova, M. Clovecko, V.B. Eltsov, R. de Graaf, J. Hosio, M. Krusius, D. Schmoranzer, W. Schoepe, L. Skrbek, P. Skyba, R.E. Solntsev, D.E. Zmeev, J. Low Temp. Phys. 146(5–6), 537–562 (2007). doi: 10.1007/s10909-006-9279-4 ADSCrossRefGoogle Scholar
  4. 4.
    S. Triqueneaux, E. Collin, D.J. Cousins, T. Fournier, C. Bäuerle, Yu.M. Bunkov, H. Godfrin, Physica B 284, 2141–2142 (2000) ADSCrossRefGoogle Scholar
  5. 5.
    E. Collin, L. Filleau, T. Fournier, Yu.M. Bunkov, H. Godfrin, J. Low Temp. Phys. 150, 739–790 (2008). Erratum, 157, 566 (2009) ADSCrossRefGoogle Scholar
  6. 6.
    E. Collin, J. Kofler, J.-S. Heron, O. Bourgeois, Yu.M. Bunkov, H. Godfrin, J. Low Temp. Phys. 158, 678 (2010) ADSCrossRefGoogle Scholar
  7. 7.
    K.J. Lulla, R.B. Cousins, A. Venkatesan, M.J. Patton, A.D. Armour, C.J. Mellor, J.R. Owers-Bradley, New J. Phys. 14, 113040 (2012) ADSCrossRefGoogle Scholar
  8. 8.
    ANSYS®, Multiphysics engineering calculation platform Google Scholar
  9. 9.
    J.J. Wortman, R.A. Evans, J. Appl. Phys. 36, 153–156 (1965). Note that at low temperatures the elastic constants are slightly larger than at 300 K ADSCrossRefGoogle Scholar
  10. 10.
    A.N. Cleland, Foundations of Nanomechanics (Springer, Berlin, 2003) CrossRefGoogle Scholar
  11. 11.
    Wolfram Research, Structural mathematics. Torsional analysis. Online: http://reference.wolfram.com/applications/structural/TorsionalAnalysis.html

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • E. Collin
    • 1
  • M. Defoort
    • 1
  • K. J. Lulla
    • 1
  • J. Guidi
    • 1
  • S. Dufresnes
    • 1
  • H. Godfrin
    • 1
  1. 1.Institut NéelCNRS et Université Joseph FourierGrenoble Cedex 9France

Personalised recommendations