Journal of Low Temperature Physics

, Volume 173, Issue 1–2, pp 4–20 | Cite as

Low-Temperature Specific Heat of Graphite and CeSb2: Validation of a Quasi-adiabatic Continuous Method

  • T. Pérez-Castañeda
  • J. Azpeitia
  • J. Hanko
  • A. Fente
  • H. Suderow
  • M. A. Ramos
Article

Abstract

We present the application of a fast quasi-adiabatic continuous method to the measurement of specific heat at 4He temperatures, which can be used for the study of a wide range of materials. The technique can be performed in the same configuration used for the relaxation method, as the typical time constants between calorimetric cell and thermal sink at 4.2 K are chosen to be of the order of τ∼30 s. The accuracy in the absolute values have been tested by comparing them to relaxation-method results obtained in the same samples (performed in situ using the same set-up), with a deviation between the absolute values <3 % in the whole temperature range. This new version of the continuous calorimetric method at low temperatures allows us to completely characterize and measure a sample within a few hours with a high density of data points, whereas when employing other methods we typically need a few days. An exhaustive study has been performed for reproducibility to be tested. In the present work, we have applied this method to two different substances: CeSb2, which exhibits three magnetic transitions at 15.5 K, 11.7 K and 9.5 K, and graphite, both highly-oriented pyrolytic graphite (HOPG) and natural crystals. Our results on these graphites are discussed in comparison with previous published data on different kinds of graphite samples.

Keywords

Specific heat Quasi-adiabatic continuous calorimetry Graphite CeSb2 

References

  1. 1.
    F.J. Morin, J.P. Maita, Phys. Rev. 129, 3 (1963) CrossRefGoogle Scholar
  2. 2.
    B.T. Matthias, T.H. Geballe, K. Andres, E. Corenzwit, G.W. Hull, J.P. Maita, Science 159, 530 (1968) ADSCrossRefGoogle Scholar
  3. 3.
    R.C. Zeller, R.O. Pohl, Phys. Rev. B 4, 6 (1971) CrossRefGoogle Scholar
  4. 4.
    F. Pobell, Matter and Methods at Low Temperatures, 1st edn. (Springer, Berlin, 1992), pp. 30–43 and 64–77 CrossRefGoogle Scholar
  5. 5.
    E. Gmelin, Thermochim. Acta 29, 1 (1979) CrossRefGoogle Scholar
  6. 6.
    T.H.K. Barron, G.K. White, Heat Capacity and Thermal Expansion at Low Temperatures (Kluwer Academic, New York, 1999). Chap. 3 CrossRefGoogle Scholar
  7. 7.
    P.F. Sullivan, G. Seidel, Phys. Rev. 173, 3 (1968) CrossRefGoogle Scholar
  8. 8.
    R. Bachmann, F.J. DiSalvo Jr., T.H. Geballe, R.L. Greene, R.E. Howard, C.N. King, H.C. Kirsch, K.N. Lee, R.E. Schwall, H.U. Thomas, R.B. Zubeck, Rev. Sci. Instrum. 43, 205 (1972) ADSCrossRefGoogle Scholar
  9. 9.
    E. Pérez-Enciso, M.A. Ramos, Thermochim. Acta 461, 50 (2007) CrossRefGoogle Scholar
  10. 10.
    T. Plackowski, Y. Wang, A. Junod, Rev. Sci. Instrum. 73, 2755 (2002) ADSCrossRefGoogle Scholar
  11. 11.
    F. Hullinger, H.R. Ott, J. Less-Common Met. 55, 103 (1977) CrossRefGoogle Scholar
  12. 12.
    P.C. Canfield, J.D. Thompson, Z. Fisk, J. Appl. Phys. 70, 5992 (1991) ADSCrossRefGoogle Scholar
  13. 13.
    S.L. Bud’ko, P.C. Canfield, C.H. Mielke, A.H. Lacerda, Phys. Rev. B 57, 13624 (1998) ADSCrossRefGoogle Scholar
  14. 14.
    J. Liu, A.G. Rinzler, H. Dai, J.H. Hafner, R.K. Bradley, P.J. Boul, A. Lu, T. Iverson, K. Shelimov, C.B. Huffman, F. Rodriguez-Macias, Y.-S. Shon, T.R. Lee, D.T. Colbert, R.E. Smalley, Science 280, 1253 (1998) ADSCrossRefGoogle Scholar
  15. 15.
    D.S. Bethune, G. Meijer, W.C. Tang, H.J. Rosen, W.G. Golden, H. Seki, C.A. Brown, M.S. de Vries, Chem. Phys. Lett. 179, 181 (1991) ADSCrossRefGoogle Scholar
  16. 16.
    T.W. Ebbesen, P.M. Ajayan, Nature 358, 220 (1992) ADSCrossRefGoogle Scholar
  17. 17.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004) ADSCrossRefGoogle Scholar
  18. 18.
    B.J.C. van der Hoeven Jr., P.H. Keesom, Phys. Rev. 130, 4 (1963) Google Scholar
  19. 19.
    U. Mizutani, T. Kondow, T.B. Massalski, Phys. Rev. B 17, 8 (1978) CrossRefGoogle Scholar
  20. 20.
    M.A. Ramos, J. Barzola-Quiquia, P. Esquinazi, A. Muñoz-Martín, A. Climent-Font, M. García-Hernández, Phys. Rev. B 81, 214404 (2010), and references therein ADSCrossRefGoogle Scholar
  21. 21.
    P.C. Canfield, Z. Fisk, Philos. Mag. B 65, 1117 (1992) ADSCrossRefGoogle Scholar
  22. 22.
    A. Mandanici, M. Cutroni, A. Triolo, V. Rodriguez-Mora, M.A. Ramos, J. Chem. Phys. 125, 054514 (2006). ADSCrossRefGoogle Scholar
  23. 23.
    M. Hassaine, R.J. Jiménez-Riobóo, I.V. Sharapova, O.A. Korolyuk, A.I. Krivchikov, M.A. Ramos, J. Chem. Phys. 131, 174508 (2009) ADSCrossRefGoogle Scholar
  24. 24.
    Y. Wang, T. Plackowski, A. Junod, Physica C 355, 179 (2001) ADSCrossRefGoogle Scholar
  25. 25.
    M.G. Alexander, D.P. Goshorn, D.G. Onn, Phys. Rev. B 22, 4535 (1980) ADSCrossRefGoogle Scholar
  26. 26.
    J. Hone, B. Batlogg, Z. Benes, A.T. Johnson, J.E. Fisher, Science 289, 1730 (2000) ADSCrossRefGoogle Scholar
  27. 27.
    J. Hone, M.C. Llaguno, M.J. Biercuk, A.T. Johnson, B. Batlogg, Z. Benes, J.E. Fisher, Appl. Phys. A 74, 339 (2002) ADSCrossRefGoogle Scholar
  28. 28.
    M.I. Bagatskii, M.S. Barabashko, A.V. Dolbin, V.V. Sumarokov, B. Sundqvist, Low Temp. Phys./Fiz. Nizk. Temp. 38, 667 (2012) Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • T. Pérez-Castañeda
    • 1
  • J. Azpeitia
    • 1
  • J. Hanko
    • 1
  • A. Fente
    • 1
  • H. Suderow
    • 1
  • M. A. Ramos
    • 1
  1. 1.Laboratorio de Bajas Temperaturas, Departamento de Física de la Materia Condensada, Condensed Matter Physics Center (IFIMAC) and Instituto Nicolás CabreraUniversidad Autónoma de Madrid, CantoblancoMadridSpain

Personalised recommendations